
1

An Ejection Chain Algorithm for the Quadratic
Assignment Problem

Cesar Regoa,1, Tabitha Jamesb, and Fred Gloverc

a School of Business Administration, University of Mississippi, University, MS 38677, USA.
 crego@bus.olemiss.edu

b Department of Business Information Technology, Pamplin College of Business, Virginia
 Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
 tajames@vt.edu

c University of Colorado, Boulder, CO 80309-0419, USA.
 fred.glover@colorado.edu

Latest Revision: August 8, 2009.

Abstract – In this study we present a new tabu search algorithm for the quadratic
assignment problem (QAP) that utilizes an embedded neighborhood construction called
an ejection chain. Our ejection chain approach provides a combinatorial leverage
effect, where the size of the neighborhood grows multiplicatively while the effort of
finding a best move in the neighborhood grows only additively. Our results illustrate
that significant improvement in solution quality is obtained in comparison to the
traditional swap neighborhood. We also develop two multi-start tabu search algorithms
utilizing the ejection chain approach in order to demonstrate the power of embedding
this neighborhood construction within a more sophisticated heuristic framework.
Comparisons to the best large neighborhood approaches from the literature are
presented.

Keywords: ejection chains, tabu search, combinatorial optimization, quadratic
assignment problem.

1 Corresponding author.

 2

1. Introduction

The quadratic assignment problem (QAP) is a classical combinatorial optimization
problem that has garnered much attention due to both its large number of applications
and its solution complexity. Originally used to model a location problem in the 1950’s,
the QAP is computationally very difficult to solve which makes it an ideal candidate for
testing new algorithmic approaches. While facility location problems remain the most
popular application area for the quadratic assignment problem, many other
applications for this problem exist including scheduling problems, statistical data
analysis, information retrieval, as well as problems in transportation. The attractiveness
of the QAP is also due to the fact that many other combinatorial optimization problems
can be formulated as a QAP, including the traveling salesman problem, the maximum
clique problem and the graph partitioning problem. (See Cela (1998) for a survey of both
classical and practical applications.)

In the context of facility location problems, the QAP can be stated as follows. Let

1{ , , }nF f f= … be a set of n facilities to be placed in exactly n locations represented by
the set 1{ , , }.nL l l= … ()ikA a= is a matrix of distances between pairs of locations ,il

,kl L∈ and ()jlB b= is an associated matrix of flows to be transmitted (or shipped)

between pairs of facilities ,jf .lf F∈ The objective is to find a minimum cost assignment

of facilities to locations considering both the flow of materials between facilities and the
distance between locations.

In mathematical terms, each assignment can be defined as a permutation π of the
underlying index set = …{1, , },N n i.e. π →: .N N Hence, if facility j is assigned to
location i and facility l is assigned to location ,k the cost of the flow between facilities

π= ()j i and π= ()l k is π π() ().ik i ka b The objective of the QAP is to find a permutation

vector π ∈Πn that minimizes the total assignment cost, where Πn is the set of all
possible permutations of N. Such a formulation can be generically described as

π π
π∈Π

= =
∑∑ () ()

1 1

.
n

n n

ij i j
i j

Minimize a b

Heuristic approaches for the QAP abound in the literature wherein local search is
commonly used as a basic component to explore the solution space. Among these
heuristics are tabu search (Taillard, 1991; Misevicius, 2005; James, Rego and Glover,
2009), scatter search (Cung et al., 1996), genetic algorithms (Fleurent and Ferland,
1994; Ahuja, Orlin and Tiwari, 2000; Misevicius, 2003, 2004; Drezner, 2003, 2005), ant
colony optimization (Stutzle and Dorigo, 1999), GRASP (Li, Pardalos and Resende,
1994), GRASP with path relinking (Oliveira, Pardalos and Resende, 2004), and path
relinking (James, Rego and Glover, 2005).

Local search methods rely on the exploration of a defined neighborhood to generate
moves in the solution space of the problem under consideration. In the case of the
QAP, this neighborhood is typically a 2-exchange neighborhood that swaps the location
of two facilities at each step of the local search process. The exploration of larger
neighborhoods where the simultaneous movement of k nodes of the permutation can be
examined is attractive though computationally very demanding.

Ahuja et al. (2007) introduce a very large scale neighborhood search (VLSN) method for
the QAP, which constitutes an important advance in the creation of more complex

 3

neighborhoods for the problem. This algorithm iteratively examines all paths (or
exchanges of nodes) of increasing depth, where the maximum depth is a specified
parameter. The VLSN algorithm considers all moves (or a defined subset of moves) of a
given depth before proceeding to the next depth. Due to the computational complexity
of the full path enumeration scheme presented, a maximum path length of k=4 was
settled upon in their study.

Ejection chain methods constitute a special class of very large neighborhoods that have
proved highly promising in the solution of difficult and large scale combinatorial
optimization problems. In general, ejection chains provide the ability to strategically
extend simpler neighborhoods, such as those consisting of exchange (swap) moves or
insert (shift) moves, to create more complex neighborhoods that can be generated with
an efficient investment of effort (Glover, 1991). Some forms of ejection chain methods
make use of a reference structure as a framework for generating moves at each level of
the ejection chain construction (Glover, 1992, 1996).

Examples of successful applications of various types of ejection chains include: the
multi-node insertion and exchange ejection chain method for the classical vehicle
routing problem (Rego 2001), the long-chain shift neighborhood for the generalized
assignment problem (Yagiura, Ibaraki and Glover, 2004), the stem-and-cycle (S&C) and
the doubly-rooted S&C reference structures for the traveling salesman problem (Rego,
1998a, Rego et al. 2006), the flower reference structure for the vehicle routing problem
(Rego, 1998b), and the subgraph ejection chain method for the crew scheduling
problem (Cavique, Rego and Themido, 1999).

The key contribution of this paper is the development of a specialized ejection chain
algorithm for the QAP, drawing on a proposal sketched in Glover (1991), which has
useful features in the QAP setting. The approach utilizes the ejection chain structure to
build successively larger exchanges based upon the elements chosen in the proceeding
chain. In this manner, only a selected subset of all possible chains at each depth is
considered for a given permutation. This process allows the method to quickly probe
larger neighborhoods, with no constraints on the depths examined, by constructing
these chains of moves based upon previously promising structures. More importantly,
these ejection chain neighborhoods exhibit a special property called combinatorial
leverage, where a level k neighborhood contains ()knO elements, but a potentially best
member for a k-neighborhood >(2)k is determined with k examinations of O()n
“component” elements.

We embed our ejection chain method within a tabu search (TS) framework to provide
strategic control over the formation of the chains. The first version of our TS method is
extremely simple, using memory only in the role of “bookkeeping” operations instead of
in the role of performing advanced guidance. Our chief purpose in examining this
simple structure is to show that the ejection chain neighborhood obtains better
solutions than an exchange neighborhood in the same framework. We then extend this
basic framework to present two multi-start tabu search variants that yield solutions of
higher quality and demonstrate the advantages of embedding ejection chains within a
more sophisticated metaheuristic. We also provide computational comparisons to
previous large neighborhood approaches.

 4

2. The Ejection Chain Method

Our ejection chain method extends the classical 2-exchange (or swap) neighborhood for
the QAP to effectively create more general k-exchange neighborhoods where k can take
any integer value between 2 and n. The method may be conceived as providing a
variable depth neighborhood that determines the value of k dynamically according to the
current state of the search.

Underlying a general ejection chain design, exchange moves are successively embedded
in the ejection chain construction, level by level, and are driven by the evaluation of two
types of interrelated moves: (1) an ejection move, which extends the depth of the
neighborhood by generating an intermediate (reference) structure; and (2) a trial move,
which creates a feasible solution from the intermediate structure provided by the
ejection move. The structure obtained with the application of the trial move is called a
trial solution.

Our QAP ejection chain method constitutes a node-based ejection chain model where
facilities are associated with nodes in a graph which are to be assigned to locations. In
this context the method implements a type of multi-node exchange move, which can be
seen as a series of swap moves for the QAP.

2.1 The Ejection Chain Neighborhood

We represent a QAP solution as a perfect matching in a bipartite graph. Let

= ∪ ×(,)G F L F L be a (complete) bipartite graph with 1{ , , }nF f f= … representing
facilities and = …1{ , , }nL l l representing locations. A solution for the QAP can be defined
by a partial graph = ∪ ⊂ ×(,)S F L E F L such that ∈(,)i jf l E if and only if facility if is

assigned to location jl and no two arcs are incident to the same node.

An ejection chain neighborhood can be defined on a subgraph = (,)H W T of S where

= … …0 0{(,), ,(,), (,)}k k l lT f l f l f l is a set of arcs representing +1l levels of an ejection

chain, which we denote by == ∪ 0 {(,)}.l k k
kT f l An ejection results by moving a facility if

from location jl to a new location ql occupied by another facility ,pf disconnecting pf
from its location. In terms of the aforementioned graph formulation, this move is
equivalent to deleting arcs (,),i jf l (,),p qf l and inserting an arc (,).i qf l Let k be a level of

the chain, each node kf ejects the node +1kf ending with the ejection of the node .lf
As a result, an ejection chain of +1l levels is the replacement of T by

−
== ∪ 1
1' {(,)},l k k

kT f l transforming S into a disconnected graph. In other words, arcs

= …(,) (0, ,)k kf l k l are successively replaced by arcs − = …1(,) (1, ,).k kf l k l Because lf is
not assigned to any location, this transformation does not represent a complete
transition from the current solution S to a new feasible solution '.S However, the
complete transition can be obtained by a trial move that connects the graph by simply
inserting the arc 0(,).lf l Let ''T be the set defined by the arc added by the trial move,
the new neighboring solution is obtained as = ∪ ∪ −' ' '' .S S T T T

The general model is illustrated in Figure 1 for three levels (0, 1, and 2) of an ejection
chain. Diagram A depicts the ejection moves performed throughout the ejection chain,
and diagrams B and C illustrate the connected graphs obtained by the trial moves at

 5

levels 1 and 2, respectively. Dotted lines represent the set T associated with original
assignments in the solution S that were affected by the ejection chain process. Likewise,
solid lines denote the sets 'T and ''T representing the new assignments made by the
ejection moves and the associated trial moves. Specifically, for level 1, we have

= {(,),(,)},T i j p q =' {(,)},T i q and ='' {(,)}.T p j By extension, for level 2, we have
= {(,),(,),(,)},T i j p q r s =' {(,),(,)},T i q p s and ='' {(,)}.T r j

i

p

r

j

q

s

Facility Location

i

p

r

j

q

s

Facility Location

i

p

r

j

q

s

Facility Location

A. Ejection Moves

B. Trial Move at Level 1

C. Trial Move at Level 2

Figure 1–Illustration of two levels of an ejection chain for the QAP

The process continues through additional nodes of G until a suitable termination
criterion is met. The adaptation of the ejection chain idea to this setting may be viewed
as a generalization of a weighted alternating path approach, as applied in the solution
of matching problems.

2.2 The Ejection Chain Construction

The evaluation of moves is a critical factor in building an ejection chain. Handled
appropriately, the evaluation of ejection and trial moves yields an important form of
combinatorial leverage in the creation of k-exchange neighborhoods of the type exploited
in this study. In our construction, the number of moves represented by a level k
neighborhood is multiplicatively greater than the number of moves in a level k-1
neighborhood, but the best move from the neighborhoods at each individual level >(1)k
can be determined by adding only the effort required to examine the neighborhood of a
single node. In particular, the number of moves composing the first, second, and third
levels are O 2(),n O 3(),n and O 4()n , but the best member of level two and three
neighborhoods can be found by adding only O()n effort to the work expended to
determine the best first level move. The method is based on the principle of capturing
relevant component moves in successive neighborhoods as a way to generate good
compound moves—potentially the best in the associated k-level neighborhood.

To understand the operation of these moves, consider starting with a simple 2-exchange
neighborhood. If the best 2-exchange is not improving, there may be a sequence of
moves going beyond 2-exchanges that can do better. For instance, the compound move
exemplified in the diagram C of Figure 1 corresponds to two successive 2-exchange
moves, where facility π= ()i j is first exchanged with facility π= ()p q , and then π= ()p j
is exchanged with π= ().r s Since location j is involved in both 2-exchange moves, this
neighborhood implements a 3-exchange move. Accordingly, a −1k level ejection chain
neighborhood of this type is shown to implement general k-exchange moves. It follows

 6

that the second level neighborhood contains O 3()n moves (barring the use of candidate
lists) since each of the n choices for i can eject O()n alternatives for node p , which in
turn can eject O()n other alternatives. However, we can identify the best move from a

closely related O 3()n neighborhood by one application of O 2()n effort and one of ()nO

effort. The O 3()n neighborhood we treat is actually less encompassing than the one
indicated, as a result of a construction that avoids duplications among certain nodes at
different levels to insure the legitimacy of the compound moves ultimately produced. As
long as the number of levels is small relative to n, the combinatorial leverage is not
significantly affected by this legitimacy-preserving construction. On the other hand,
there can be advantages to extending the number of levels for the purpose of inducing a
diversification effect to overcome local optimality.

To evaluate the change in solution cost created by a compound move at a given level k
of an ejection chain, it is convenient to subdivide these changes into two fundamental
component operations: disconnecting the facility currently assigned to location ,j and
relocating facility i to location .j Denote the first ejected node (which initiates the
chain) by the top node t, and the current ejected node by the bottom node b. We let π ()i
represent the facility at location i in a solution corresponding to a trial ejection chain
under consideration, and π '()i represent the facility at location i in a current solution.

Because the selection of the initial top and bottom nodes requires the evaluation of the
trial move that is made after ejecting the potential bottom node, the relocation of the
bottom node into the position vacated by the top node must be evaluated before
relocating the top node. This particularity makes the relocation operation at the first
level of the ejection chain different from the relocations used in the ejection and trial
moves performed at higher levels of the chain (where the relocation of the current
bottom node is evaluated after the bottom node at the previous level already occupies
its new position).

For this reason, it is convenient to define a special relocation operation aimed at
circularizing the ejection move at the first level of the ejection chain. The cost changes
associated with these operations may be expressed as follows:

Disconnection value:

π π
=

= − ≠∑ () ()
1

() ,
n

h j h j
h

j a b h j tD

Relocation value: π
=

= ≠∑ ()
1

(,) ,
n

jh i h
h

i j a b h j tR

Circularization value:
π π

π π

=

=

⎧
≠⎪

⎪
= ⎨

⎪ = ≠⎪
⎩

∑

∑

() ()
1

() ()
1

 ,

()

 ,

n

th j h
h
n

th t h
h

a b h j t

j

a b h j h t

C

Hence, for the symmetric QAP, the actual solution cost change associated with these
operations is twice the value obtained by the corresponding operation. The
generalization of these operations to the asymmetric variant of the problem can be

 7

obtained by simply creating additional product terms that switch the indexes of the
product terms above and adding these new terms to the preceding expressions.

Let ejection value denote the solution cost change associated with the ejection moves,
and let trial value denote the solution cost change associated with a trial move. Then,
an ejection chain of l levels satisfying the requirements of legitimacy may be recursively
evaluated as follows:

Ejection value:

π

π −

⎧ + + =⎪= ⎨
− + + < ≤⎪⎩

1

() () ((),) 1
()

(1) () ('(),) 1

k k

k k k

t b t b k
k

k b b b k l

D D R

D R
E

E

Trial value:
π

⎧ + =⎪∆ = ⎨
+ < ≤⎪⎩

() () 1
()

() ('(),) 1

k

k

k b k
k

k b t k l

E C

E R

Letting ()Z S be the cost of the current QAP solution S, the value of a trial solution kS

obtained at a level k of the ejection chain is given by = + ∆() () 2 ()kZ S Z S k for the
symmetric case. As previously mentioned, for the asymmetric case, the last term would
include the reverse products in D, R, and C rather than being doubled. The method

keeps track of the level *k where the best trial solution has been found, which
corresponds to the depth of the compound move applied to the current solution S so as
to obtain the new neighboring solution '.S Figure 2 gives an example of these
calculations for the evaluation of two levels of an ejection chain. To simplify the
illustration and keep the equations short, the example considers the symmetric QAP
and assumes that the transition to a new neighboring solution is performed at level two.

Illustrative example:

2

3

1

2

3

Facility Location

1

4 4

2

3

1

2

3

Facility Location

1

4 4

2

3

1

2

3

Facility Location

1

4 4

Starting Solution S

= 4,2,3,1S

Level 1: Ejection Move

= − − −12 24 23 23 24 12(2) a b a b a bD
= − −13 34 34 13(3) a b a bD
= +31 24 34 12(2,3) a b a bR

= + +(1) (2) (3) (2,3)D D RE

Level 1: Trial Move

= + +12 34 23 23 24 13(3) a b a b a bC
∆ = +(1) (1) (3)CE

=1 4,3,2,1S

= + ∆1() () 2 (1)Z S Z S

 8

2

3

1

2

3

Facility Location

1

4 4

2

3

1

2

3

Facility Location

1

4 4

2

3

1

2

3

Facility Location

1

4 4

Level 2: Ejection Move

= − −14 14 34 12(4) a b a bD
= +14 34 34 23(3,4) a b a bR

= + +(2) (1) (4) (3,4)D RE E

Level 2: Trial Move

= + +12 14 23 12 24 13(1,2) a b a b a bR
∆ = +(2) (2) (1,2)RE

=2 4,1,2,3S

= + ∆2() () 2 (2)Z S Z S

Final Solution = 2'S S

Figure 2–Evaluation of an ejection chain of two levels

In the illustration, the chain starts with = 2t and =1 3b as the initial top and bottom
nodes, respectively. The first operations consist of disconnecting these two nodes from
the graph and relocating (facility) node 2 in the location previously occupied by node 3,
keeping node 2 disconnected. The algebraic sum of these three operations gives the
value of the ejection move (1)E for the first level of the chain. The value of the trial move
∆(1) associated with the current ejection is obtained by circularizing the chain,
relocating the current ejected node 3 to occupy the location vacated by the top node 2.
At this point, the value of the corresponding trial solution 1()Z S can be calculated by
adding the circularization value to the value of the starting solution. The second level is
created by choosing facility 1 at location 4 to be ejected by the currently disconnected
(bottom) node =1 3b , thus setting =2 4.b The new ejection value is then computed by
adding the disconnection and relocation values (4)D and (3,4)R of the current ejection
to the previously obtained ejection value (1).E Finally, the new trial value ∆(2) is
obtained by adding the relocation value of facility 1 into the original position of the top
node to the current ejection value.

2.2 The Ejection Chain Procedure

The ejection chain method begins by identifying the best local move for each facility j,
which constitutes removing j from its current location and relocating it in the position
occupied by a facility l, which is thereby ejected. (The method can also start by looking
at each l and finding the best j to replace it.) The first level of the ejection chain consists
of selecting initial chains based on performing a series of best 2-exchange moves.
Notably, such a move corresponds to simultaneously determining the best initial node
to be ejected and the best node to occupy the location of the ejected node. The chain
grows by selecting a new node to be ejected by the previously ejected node. Under the
natural restriction that prevents an element from being moved twice, the chain can
continue to grow until all n nodes have been ejected. The pseudocode for the ejection
chain procedure is sketched in Figure 3.

 9

Figure 3–The ejection chain procedure

3. Tabu Search Algorithms

Rudimentary tabu search (TS) approaches of the type considered here employ short
term memory structures to forbid moves that lead to solutions recently visited
(rendering these moves tabu). One or more aspiration criteria are typically employed
that allows the tabu status of a move to be overridden when the move exhibits desirable
characteristics. More advanced TS implementations include the use of long term
memory to restrict or encourage moves based on frequency and logical analysis, and
incorporate intensification and diversification strategies to encourage the search
towards promising and unexplored regions of the search space, respectively. For a
comprehensive treatment of TS, see Glover and Laguna (1997).

The first TS approach we consider, denoted EC1, is used only to provide a comparison
between different neighborhoods, and minimizes the TS mechanisms employed. EC1
uses a tabu restriction that renders moves tabu for only a short period and is used to
compare the classical swap neighborhood to the ejection chain neighborhood. We then
develop two additional tabu search algorithms denoted EC2 and EC3, using a multi-
start design to provide a basic form of diversification. While still utilizing only simple
TS strategies, these algorithms illustrate the potential of the ejection chain approach
when embedded within a slightly more advanced framework.

Step 0. Initialization
(a) Let π be the permutation associated with a starting solution S.
(b) Set k=1, = ∅.ke

Step 1. Create the first level of the ejection chain
(a) Determine elements t and kb that produce the lowest trial value ∆()k over all

elements ∈, ;kt b N ≠ .kt b Let ()kE be the corresponding ejection value.
(b) Set − =1 { },ke t −= ∪1 { }.k k ke e b Let =*k k be the current best level.
(c) Update current trial solution by setting π π=() ()kt b and π π=() '().kb t
(d) If =k L go to Step 3. Otherwise go to Step 2.

Step 2. Grow the chain to further levels
(a) Set k=k+1.
(b) Determine the new element kb that minimizes the ejection value ()kE over all

elements ∈ ∉; .k k kb N b e
(c) Set −= ∪1 { }.k k ke e b
(d) Update current trial solution by setting π π=() ()kt b and π −= 1() .k kb b
(e) Compute trial value ∆()k for the current level k.
(f) Keep track of the best level k* that produced the best trial value.
(g) If k<L and <ke n return to Step 2(a). Otherwise go to Step 3.

Step 3. Perform the compound move
(a) Apply to S the sequence of ejection moves in *,ke recursively.
(b) Perform the trial move on S for the level k* to create a new solution '.S
(c) Compute the cost (')Z S of the new current solution.

 10

3.1 The basic ejection chain algorithm: EC1

Starting from a randomly generated initial permutation, the EC1 tabu search algorithm
utilizes a tabu list to restrict only the choice of the initial top and bottom nodes of the
ejection chain construction. Once the initial nodes of a chain are selected, a tabu
tenure is chosen for each of the two nodes that determines the number of subsequent
iterations in which these nodes are tabu, meaning in this case that they are prevented
from starting another chain. Since these tabu restrictions only apply to the two initial
nodes, associated checking and updating of the tabu list are implemented in Step 1(a)
of the ejection chain procedure of Figure 3. An aspiration criterion is not used in EC1 to
override the tabu restrictions, since we give them a very small tenure. To obtain a direct
comparison of the neighborhoods, a 2-exchange (or swap) neighborhood version of EC1
was also implemented by restricting the chain length to two nodes, i.e. =1.L The EC1
algorithm imposes a minimum amount of heuristic guidance on the search and
illuminates the impact of the neighborhood definition utilized. As a basis for this we
keep track of the number of consecutive iterations with no improvement of the global
best solution (NF) and stop the algorithm when this counter reaches a predefined
maximum number of failures ().MF The basic algorithm is shown in Figure 4.

3.2 Multi-start ejection chain algorithms: EC2 and EC3

Multi-start algorithms seek to perturb the standard search path by periodically re-
launching the search from a new initial configuration. A multi-start tabu search for the
QAP is given by Fleurent & Glover (1999) where a local search is iteratively applied to
solutions built by a constructive method tailored to provide high quality starting
solutions. Another approach for diversifying the solutions generated is to make
parameter adjustments to influence the trajectory of the search. While such an
approach is not a multi-start approach in the classical sense, it likewise leads to a new
solution that may be interpreted as a new starting point for the search, and hence for
convenience we will refer to it as a multi-start procedure in the discussions of this
paper. The multi-start procedures introduced in the current study are of both types.

EC2 and EC3 differ in the solution that ultimately replaces the current working
permutation when the algorithm is restarted. Both algorithms impose a simple tabu
restriction on the initial nodes chosen as considered in EC1. However, for these multi-
start variants the tabu tenure is increased and an aspiration criterion is applied that
allows a tabu move to be made under certain conditions, as follows. First, we apply the
aspiration criterion only if the previous iteration of the local search did not produce a
globally improving solution. Next, the move must meet two conditions: (1) the cost of the
move must be less than that of the best move found so far during the current iteration;
(2) a move meeting the first condition is permissible if the tabu tenure of the elements of
the restricted move fall below a predefined aspiration threshold. Since these conditions
restrict the choices of the two initial nodes used to start the chain, they are tested in
Step 1(a) of the ejection chain procedure in Figure 3.

The number of non-improving iterations (or failures) since the last perturbation is kept
by the NRF counter. Both variants are restarted when an improving solution is not
found within a predetermined number of iterations since the last perturbation was
applied. The maximum restart failures threshold value MRF is drawn from a range
determined by the stopping criterion parameter. At each restart, this value is redrawn
to allow the search stagnation threshold to vary within a controlled range throughout
the run of the algorithm. For both EC2 and EC3, when the maximum restart failures

 11

threshold is reached (NRF = MRF), the tabu parameters are reset to change the
trajectory of the search.

In EC2 the current working solution is replaced by the global best solution from the
previous iterations of the search. EC3 restarts from a diversified version of the best
solution. In this variant, a diversification method is applied to a copy of the best
permutation and the current working solution is replaced with this diversified
permutation. Figure 5 provides the pseudocode for the general multi-start algorithm.

Figure 4–Simple tabu tenure ejection chain algorithm: EC1

Figure 5–Multi-start ejection chain algorithm variants: EC2 and EC3

Step 0. Initialization
(a) Generate a starting solution S.
(b) Let =*S S be the current best solution.
(c) Input parameters: maximum number of failures MF and maximum levels L.

Step 1. Perform tabu search
(a) Call the ejection chain procedure with parameters S and L
(b) Set = '.S S
(c) If strictly improving:

(c1) Update the best solution with the new current solution, =* .S S
(c2) Set number of failures = 0.NF

(d) Otherwise, set = +1.NF NF
(e) If <NF MF return to Step 1(a). Otherwise stop.

Step 0. Initialization
(a) Generate a starting solution S.
(b) Let =*S S be the current best solution.
(c) Input parameters: maximum number of failures MF and maximum levels L.

Step 1. Perform tabu search
(a) Call the ejection chain procedure with parameters S and L
(b) Set = '.S S
(c) If strictly improving:

(c1) Update the best solution with the new current solution, =* .S S
(c2) Set number of failures = 0.NF
(c3) Disallow aspiration.

(d) Otherwise:
(d1) Increment number of failures = +1.NF NF
(d2) Increment number of restart failures = +1.NRF NRF
(d3) Allow aspiration.
(d4) If >NRF MRF (number restart failures > maximum restart failures)

(d4.1) Update aspiration threshold.
(d4.2) Remove tabu restrictions for all elements.
(d4.3) Modify tabu tenure.
(d4.4) Set = 0NRF and modify MRF value.
(d4.5) Set current solution = *.S S
(d4.6) (If EC3) diversify (best solution) .S

(e) If <NF MF return to Step 1(a). Otherwise stop.

 12

The diversification procedure used in EC3 was suggested by Glover (1998) and its
pseudocode is given in Figure 6. This method creates a new solution from a seed
solution (in this case the current global best permutation) by defining a step size and
then reordering the permutation based upon this step size. Starting from a step size of
2, the step size is increased each time the algorithm is restarted, cycling back to the
original step size if necessary.

Figure 6–Diversification procedure

To illustrate the method given in Figure 6, consider the following example permutation:

ϕ = 3, 5, 8,1, 4, 6, 2, 7 .

Choosing a step size of 2, the first iteration of the algorithm initializes the start variable
to 2, which causes j to range from 2 to the number of elements in the permutation, in
this example n = 8. After the first iteration of the outer loop, the following partial
permutation is obtained:

π = 5,1, 6, 7, _, _, _, _ .

The next pass through the outer loop then sets =1start and the following complete
permutation is obtained:

π = 5,1, 6, 7, 3, 8, 4, 2 .

In this manner, for each step size a different permutation is obtained.

4. Computational Results

All algorithms were tested on a standard set of QAP benchmark instances obtained from
QAPLIB (Burkard et al., 1997). All algorithms were written in the C programming
language and run on a single Intel Itanium processor (1.3 GHz) on a SGI Altix running
the Linux operating system. The parameters for each algorithm variant (EC1, EC2, and
EC3) developed in this study are summarized in Table 1.

Step 0. Initialization
(a) Consider π be a permutation associated with an input solution S
(b) Consider a seed permutation ϕ and set ϕ π= .
(c) Set =1.k
(d) Set =start step and set = .j start

Step 1. Generate diverse solution
(a) Set π ϕ=() ().k j
(b) Set = +1.k k
(c) If <j n set = +j j step and go to Step 1(a).
(d) If >1start set = +1start start and to Step 1(a). Otherwise stop.

 13

Parameter

 EC1

EC2

EC3
Maximum Failures (MF)
(Stopping Criterion SC1)

5000n

5000n

5000n

Time Limit
(Stopping Criterion SC2)

 1 hour (n ≤ 40)
2 hours (n > 40)

 1 hour (n ≤ 40)
2 hours (n > 40)

 1 hour (n ≤ 40)
2 hours(n > 40)

Allowable Failures (MRF)
Lower Limit
Upper Limit

(Restart Criterion)

n/a
n/a

5n

500n

5n

500n

Tabu Tenure
Lower Limit (LT)
Upper Limit (UT)

3 (static)
10 (static)

n/10 (variable)
3n/10 (variable)

n/10 (variable)
3n/10 (variable)

Aspiration Threshold n/a (LT+UT)/2 (LT+UT)/2
Restart Tabu Tenure

Lower Limit (LT)
Upper Limit (UT)

n/a
n/a

n/10

n

n/10

n

Restart Solution

n/a

global best
 diversified

global best

Table 1–TS Variant Parameter Settings

We consider runs under two stopping conditions, denoted by SC1 and SC2. SC1
caused the algorithms to cease execution of the search after no improvement is found in
5000n iterations (MF), where n is the number of facilities/locations, or the problem size.
SC2 stipulates a time limit of 1 hour for instances of size n ≤ 40, and 2 hours for larger
instances, after which the algorithm terminates execution. SC2 is the same stopping
condition applied in Ahuja et al. (2007) and is used to allow for a direct comparison
with the associated VLSN algorithms.

Tables 2 and 3 present computational results for all variants of the algorithms under
SC1 and SC2 stopping conditions, respectively. The parameters used in all algorithms
for both Tables 2 and 3 are the same with the exception of the stopping condition. All
algorithms ran 10 times on each problem instance, each time starting from a randomly
generated seed solution. The tabu tenure for EC1 was set to be an integer value
randomly drawn from the range 3 to 10. The tabu tenure for EC2 and EC3 is initialized
with a value chosen from the range n/10 and 3n/10. At each restart for EC2 and EC3,
the tabu search parameters are adjusted. The upper and lower limits, that are used to
determine the tabu tenure for an element are redrawn and allowed to vary in the range
n/10 to n. Similarly, the maximum restart failures (MRF) parameter is reset every time
a restart occurs for both the EC2 and EC3 variants. At each restart MRF is chosen
from the range 5n to 500n. As previously mentioned no aspiration criterion is used in
EC1, while for EC2 and EC3 tabu active moves are subjected to two aspiration
conditions. In our implementation, the required aspiration threshold is defined to be the
average of the lower and upper limits of the current tabu tenure range. Also, as
remarked EC2 and EC3 algorithms differ in the mechanism used to restart the search:
EC2 restarting from the current global best solution, and EC3 restarting from a
diversified version of the global best solution.

 14

Table 2 and Table 3 follow the same format. The first two columns provide the name of
the test instance and the corresponding best known solution (BKS). The next columns
are organized in four groups associated with each variant of our ejection chain
algorithm. The first two groups represent the simple tabu search algorithm restricted to
first-level ejection chains to implement a 2-exchange neighborhood (2-exchange EC1),
and its extension to n-level ejection chains implementing a variable depth k-exchange
neighborhood (EC1). The next two groups correspond to the two multi-start tabu search
variants using either the current global best solution (EC2) or a diversified version of it
(EC3) as a perturbation scheme to restart the search. For each algorithm we provide
the average percent deviation (APD) to the BKS, the best percent deviation (BPD) for
only the best solution obtained from the 10 runs, the average iteration the best solution
was found (ABI), and either the average running time to completion (ATTC) in minutes
using stopping criterion SC1 (Table 2) or the average running time to solution (ATTS)
using stopping criterion SC2 (Table 3).

Figure 7 graphically depicts the average solution quality of the three EC variants and
the 2-exchange neighborhood from Table 2. Figure 8 shows a comparison of the average
times to completion for all algorithms in Table 2 on each problem instance.

 15

 2-Opt EC1 EC1 EC2 EC3

Problem BKS APD BPD ABI ATTC APD BPD ABI ATTC APD BPD ABI ATTC APD BPD ABI ATTC

Skorin-Kapov Instances
sko42
sko49
sko56
sko64
sko72
sko81
sko90

sko100a
sko100b
sko100c
sko100d
sko100e
sko100f

15812
23386
34458
48498
66256
90998
115534
152002
153890
147862
149576
149150
149036

0.120
0.199
0.418
0.644
0.932
0.901
0.691
0.736
0.868
1.108
1.007
1.178
0.989

0.000
0.051
0.012
0.107
0.211
0.090
0.230
0.378
0.659
0.557
0.389
0.801
0.769

121327
81096
101949
145538
211365
217687
254279
225563
176445
256918
59199
363182
324463

2.46
4.51
8.70

19.66
34.30
58.79
97.54
146.47
136.42
152.55
112.66
174.00
166.58

0.028
0.199
0.527
0.464
0.691
0.849
0.881
0.661
0.803
0.779
0.862
1.147
0.979

0.000
0.000
0.075
0.000
0.072
0.259
0.389
0.404
0.298
0.170
0.594
0.615
0.498

141003
56821
69944
86411
224179
76567
104395
182165
338037
176688
106422
188224
76796

4.78
7.05
12.78
27.64
54.37
70.54
117.12
213.58
262.14
211.84
189.76
215.46
180.70

0.293
0.235
0.475
0.243
0.322
0.336
0.305
0.314
0.379
0.731
0.437
0.522
0.567

0.000
0.051
0.012
0.008
0.060
0.097
0.000
0.026
0.127
0.030
0.070
0.020
0.169

127261
105762
204842
271342
252483
299275
587829
444283
379273
616575
369067
428918
468075

6.16
11.00
22.96
50.46
69.86
121.94
256.00
334.82
311.93
396.26
307.84
329.18
344.04

0.061
0.086
0.259
0.139
0.340
0.271
0.272
0.263
0.226
0.269
0.316
0.198
0.395

0.000
0.051
0.029
0.000
0.211
0.044
0.014
0.133
0.087
0.107
0.060
0.020
0.203

181144
164692
144841
330584
310567
378543
443539
451170
378051
470522
667656
583862
412134

7.15
13.02
19.97
55.50
76.20
136.34
219.75
337.15
311.29
344.28
414.04
384.48
323.81

Average 0.753 0.327 195308 85.74 0.628 0.260 140589 120.60 0.397 0.052 350383 197.11 0.238 0.074 378254 203.31

Symmetric Taillard Instances
tai20a
tai25a
tai30a
tai35a
tai40a
tai50a
tai60a
tai80a
tai100a

122455319
344355646
637117113
283315445
637250948
458821517
608215054
818415043

1185996137

0.906
1.523
0.959
1.123
1.022
1.090
1.025
0.804
0.481

0.000
0.937
0.398
0.595
0.439
0.710
0.775
0.625
0.348

70967
109665
144811
143038
172807
212317
230485
324638
491175

0.38
0.23
0.45
1.08
2.19
6.67

16.99
64.78
200.14

0.718
0.670
0.645
0.972
0.825
1.058
1.017
0.695
0.563

0.304
0.000
0.490
0.698
0.416
0.721
0.602
0.453
0.311

60805
63245
127572
98117
202577
198235
157755
311313
304380

0.31
0.27
1.29
1.92
4.50
11.14
23.78
97.93
252.10

0.152
0.294
0.178
0.302
0.420
0.732
0.715
0.644
0.600

0.000
0.000
0.000
0.000
0.305
0.572
0.499
0.392
0.272

66085
61480
71869
143831
139842
169572
308515
465271
332753

0.22
0.71
1.60
3.29
5.38
13.81
40.43
142.07
295.57

0.199
0.055
0.137
0.272
0.387
0.726
0.861
0.780
0.654

0.000
0.000
0.000
0.000
0.120
0.564
0.601
0.581
0.419

50303
76388
61311
151137
183452
189709
134047
211760
321325

0.20
0.69
1.29
3.38
6.10

14.30
28.60
100.09
291.44

Average 0.993 0.536 211100 32.55 0.796 0.444 169333 43.69 0.449 0.227 195469 55.90 0.452 0.254 153270 49.56

Overall 0.851 0.413 201796 63.98 0.729 0.335 152348 89.13 0.418 0.123 287009 139.34 0.326 0.147 286215 140.41

Table 2–Computational results for Skorin-Kapov problems and symmetric Taillard problems using Stopping Criterion 1

 16

Figure 7–Average Percent Deviation (APD) for Skorin-Kapov and
symmetric Taillard Instances

Figure 8–Average Time to Completion (ATTC) for Skorin-Kapov
and symmetric Taillard instances

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

sk
o4

2
sk

o4
9

sk
o5

6
sk

o6
4

sk
o7

2
sk

o8
1

sk
o9

0

sk
o1

00
a

sk
o1

00
b

sk
o1

00
c

sk
o1

00
d

sk
o1

00
e

sk
o1

00
f

tai
20

a
tai

25
a

tai
30

a
tai

35
a

tai
40

a
tai

50
a

tai
60

a
tai

80
a

tai
10

0a

Problem Instance

A
ve

ra
ge

 %
 D

ev
ia

tio
n

2-opt EC1
EC1
EC2
EC3

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

sk
o4

2
sk

o4
9

sk
o5

6
sk

o6
4

sk
o7

2
sk

o8
1

sk
o9

0

sk
o1

00
a

sk
o1

00
b

sk
o1

00
c

sk
o1

00
d

sk
o1

00
e

sk
o1

00
f

tai
20

a
tai

25
a

tai
30

a
tai

35
a

tai
40

a
tai

50
a

tai
60

a
tai

80
a

tai
10

0a

Problem Instance

A
ve

ra
ge

 T
im

e
in

 M
in

ut
es

2-opt EC1
EC1
EC2
EC3

 17

 2-Opt EC1 EC1 EC2 EC3

Problem BKS APD BPD ABI ATTS APD BPD ABI ATTS APD BPD ABI ATTS APD BPD ABI ATTS

Skorin-Kapov Instances
sko42
sko49
sko56
sko64
sko72
sko81
sko90

sko100a
sko100b
sko100c
sko100d
sko100e
sko100f

15812
23386
34458
48498
66256
90998

115534
152002
153890
147862
149576
149150
149036

0.008
0.053
0.183
0.475
0.827
0.855
0.691
0.739
0.868
1.122
1.007
1.191
1.008

0.000
0.000
0.000
0.091
0.211
0.086
0.230
0.378
0.659
0.557
0.389
0.801
0.782

753938
1888633
1651179
1106456
473306
473255
254279
144780
176445
167928
59199
202636
237391

6.61
26.81
37.48
51.18
30.55
50.74
40.27
33.47
40.82
38.82
13.68
46.93
52.01

 0.000
0.063
0.324
0.397
0.705
0.943
0.785
0.617
0.521
1.445
1.019
0.796
1.063

0.000
0.000
0.186
0.000
0.196
0.481
0.533
0.163
0.396
0.889
0.784
0.413
0.625

103467
615169
1127980
504155
593491
247691
212166
110996
92304
132206
110292
101984
100648

1.62
15.08
43.41
38.14
60.92
41.69
51.87
39.94
33.19
42.48
39.52
36.66
36.20

 0.019
0.107
0.305
0.139
0.319
0.364
0.424
0.424
0.436
0.963
0.537
0.692
0.627

0.000
0.051
0.012
0.008
0.060
0.097
0.029
0.112
0.149
0.127
0.119
0.020
0.279

1183886
857422
771265
469825
316919
327019
272543
208584
238888
182385
202564
216867
187227

27.50
28.00
38.07
44.27
39.52
65.44
77.96
86.13
98.71
75.53
83.66
89.67
77.53

 0.000
0.039
0.027
0.078
0.250
0.278
0.473
0.340
0.408
0.543
0.517
0.460
0.542

0.000
0.000
0.012
0.000
0.115
0.114
0.132
0.197
0.140
0.172
0.182
0.020
0.421

984019
15511213
1176507
642791
635224
340529
202259
171948
129912
188109
200304
214302
203808

21.43
50.91
58.02
60.99
79.22
68.06
57.84
70.86
53.54
77.63
88.14
88.33
84.19

Average 0.694 0.322 583802 36.10 0.668 0.359 311734 36.98 0.412 0.082 418107 64.00 0.304 0.116 510840 66.09

Symmetric Taillard Instances
tai20a
tai25a
tai30a
tai35a
tai40a
tai50a
tai60a
tai80a

tai100a

122455319
344355646
637117113
283315445
637250948
458821517
608215054
818415043

1185996137

0.000
0.102
0.402
0.479
0.519
0.802
0.883
0.745
0.567

0.000
0.000
0.016
0.082
0.074
0.635
0.769
0.559
0.354

18885284
24862224
10567411
4647443
5101524
2988029
1596279
535781
292228

7.52
26.19
22.58
17.68
31.42
44.29
54.50
54.01
67.46

 0.000
0.000
0.161
0.366
0.550
0.753
0.791
0.714
0.558

0.000
0.000
0.000
0.067
0.074
0.534
0.403
0.532
0.313

5359412
3924530
6367375
3902298
2545141
2209486
800025
417335
160611

5.80
9.26
27.75
28.46
28.88
56.93
45.52
65.71
57.79

 0.000
0.000
0.000
0.000
0.274
0.550
0.629
0.681
0.714

0.000
0.000
0.000
0.000
0.074
0.352
0.499
0.554
0.630

410389
265401
520451
507435
1728563
1045558
685710
421467
180522

0.89
1.10
3.62
5.51
27.76
35.57
49.25
79.46
74.65

 0.000
0.000
0.000
0.000
0.219
0.514
0.657
0.730
0.729

0.000
0.000
0.000
0.000
0.074
0.364
0.336
0.486
0.419

260152
132537
293665
915365
1742277
1041698
685735
345948
131851

0.56
0.55
2.04
9.95

28.01
35.43
49.24
65.05
54.36

Average 0.500 0.277 7719578 36.18 0.433 0.214 2854024 36.23 0.316 0.234 640611 30.87 0.317 0.187 616581 27.24

Overall 0.615 0.303 3502983 36.14 0.571 0.300 1351762 36.67 0.373 0.144 509131 50.45 0.309 0.145 554098 50.20

Table 3–Computational results for Skorin-Kapov problems and symmetric Taillard problems using Stopping Criterion 2

 18

Table 2 shows that the ejection chain neighborhood improved the average solution
quality of all but 4 problems over the 2-exchange neighborhood embedded in the same
heuristic. The impact of the ejection chain neighborhood can be easily observed as EC1
obtained better average results than the 2-exchange EC1 algorithm on 19 of the 22 test
problems and tied on 1. The 2-exchange EC1 and EC1 are identical algorithms except
for the neighborhood utilized. In the 2-exchange EC1 algorithm, the maximum length
of the chain was limited to 2 nodes, which simulates a 2-exchange neighborhood. The
best overall solution was found by EC1 for 12 out of the 22 problems, with the 2-
exchange version obtaining the best overall solution for 9 out of 22, with a tie for one
problem where both variants found the BKS.

In Table 3 the results were similar. EC1 using the ejection chain neighborhood
obtained better average results on 13 of the 22 problem instances and tied on 1. The
performance was degraded a small amount due to the time limit imposed. It should be
noted that the 2-exchange neighborhood algorithm is able to perform around twice as
many iterations in the same amount of time as the ejection chain neighborhood. While
the ejection chain neighborhood is quick compared to a full k-opt exploration, it is still
slower than a swap neighborhood. This leads to an interesting observation. In Table 3,
where the runtime of the algorithm was restricted, the ejection chain neighborhood still
outperformed the 2-exchange neighborhood in terms of solution quality. On 8 of the 14
test instances where the ejection chain neighborhood tied or bested the 2-exchange
neighborhood in Table 3, the average time to the best solution (ATTS) for EC1 was
actually less than the 2-exchange neighborhood EC1. This indicates that the ejection
chain neighborhood is able to quickly find high quality solutions. This is reinforced by
the results in Table 2, which shows that allowed to iterate with stagnation as the
stopping condition, EC1 using the ejection chain neighborhood performs even better
against the 2-exchange neighborhood EC1. These results are obtained in most cases
without doubling the computational time of the 2-exchange neighborhood EC1.

In Table 2, as well as in Table 3, the EC3 multi-start variant produced the best overall
results of all approaches, obtaining the best average solution quality for 16 out of 22
problems in Table 2. In Table 3, EC3 obtained the best average solution quality for 14
out of 22 problems. However, EC2 and EC3 tied on 4 of the 22 problems, so the results
indicate that EC3 does as well as or better than all other variants under SC2 on 18 of
the 22 problems. EC2 had 4 of the best average percent deviations in Table 2 (3 out of
22 in Table 3). EC1 and the 2-exchange EC1 provided one best average percent
deviation each in Table 2. In Table 3, the 2-exchange EC1 obtained the best average
percent deviation to one problem. The EC2 variant, which replaced the current working
solution with the global best solution rather than a diversified solution, was clearly
outperformed by the EC3 variant. This suggests that the use of strategic diversification
is highly beneficial and agrees with previous findings where metaheuristics applied to
the QAP that employ some type of diversity have provided good results (Misevicius
2003, 2005; Drezner, 2003).

EC2 shows a slight edge over EC3 in obtaining the best overall solution. EC2 produced
the best overall solutions (BPD) for 8 of 22 problems in Table 2 (7 out of 22 in Table 3)
while EC3 produced 5 of the best overall solutions in Table 2 (3 out of 22 in Table 3).
EC1 produced 1 best overall solution in both Tables. In Table 3, 2-exchange
neighborhood EC1 produced 1 best overall solution. On the other 8 instances in Table
2 (10 in Table 3) at least 2 of the variants tied.

 19

4.1 Comparisons with very-large scale neighborhood algorithms

The VLSN algorithms introduced by Ahuja et al. (2007) employ a type of variable depth
k-opt neighborhood and are therefore appropriate for comparison with our EC
algorithms. The purpose of this comparison is to investigate the relative performance of
the ejection chain algorithms in the current study and other large neighborhood
algorithms. In order to clarify the analysis, it is convenient to discuss the fundamentals
of VLSN algorithms and contrast them to the EC algorithms.

A full path enumeration search requires that every k-exchange be explored and can be
prohibitively expensive even for relatively small values of k. This expense has severely
limited attempts to use neighborhoods for the QAP more complex than the swap
neighborhood (which results in k = 2). The VLSN algorithms and the ejection chain
algorithms contribute alternative approaches for exploring larger neighborhoods.
The VLSN algorithms of Ahuja et al. (2007) introduce an improvement graph for the
QAP together with several variants of a search algorithm utilizing a large neighborhood.
The concept of an improvement graph was first introduced by Thompson and Orlin
(1989) for partitioning problems. For the QAP, it is used to store partial costs for k-
exchanges on a permutation. The initial cost of constructing the improvement graph is

3()nO ; however, once created for a permutation it can be updated in 2()knO time. The
improvement graph does not contain the full cost of the k-exchange, rather a good
approximation. It is especially useful in a path enumeration scheme as it allows for
relatively quick evaluation of a large number of neighbors on a single permutation with
the construction of only one improvement graph. If a new permutation is introduced,
the improvement graph must be reconstructed.

The ejection chain method, in contrast, exploits a selective subset of neighbors, which
provides a quick investigation of a promising extended neighborhood rather than
examining all exchanges at a given depth. This reduces the number of calculations
necessary, thus speeding the neighborhood search process without the necessity of
maintaining a cost matrix. As in the VLSN method a k-level ejection chain does not
necessarily produce the overall best k-exchange move, rather a potentially good move.
Ejection chain strategies are particularly amenable to being exploited within an
adaptive memory TS framework, where other operators may also be applied to the
permutation.

The VLSN search algorithms in Ahuja et al. (2007) explore iteratively larger
neighborhoods up to a defined k beginning from a randomly drawn permutation.
Specifically, the VLSN algorithms explore all exchanges at depth 2, then all (or a pruned
subset) exchanges at depth 3, followed lastly by the 4-exchanges (in implementation,
the algorithms are limited to a depth of 4). In contrast, the ejection chain method
discovers the best exchange at depth 2, and then iteratively extends that 2-exchange up
to a depth of n. The method keeps track of the level k* of the chain where the best trial
solution was found and then applies the associated k-exchange move to the
permutation and the process is repeated. An iteration of the VLSN algorithms ends
when the search on the current permutation is exhausted (a new best solution is found
or no better solution is found after exploring all allowed k-exchanges). Then a new
random permutation is drawn, a new improvement graph is constructed and the
process is repeated. When comparing the two methods, the VLSN algorithms more
nearly resemble a breadth-first search and the EC algorithms more nearly resemble a
depth-first search, though each affords the strategic benefit of avoiding the complexity
of such classical searches while nevertheless uncovering high quality solutions. Future
research that combines the two approaches would be of interest.

 20

The difference between the VLSN algorithms concerns how many k-exchanges are
examined at a given depth. The authors propose four VLSN variants. The first is a full
path enumeration where all paths of a given depth are examined. As previously
mentioned this process is very costly and was ruled out by the authors as a viable
algorithm. The other three variants employed “path pruning” techniques to reduce the
number of paths examined at each depth. The second proposed variant, keeps only
paths with a negative cost at each depth. The authors state that this variant was
outperformed in testing by the other variants, so computational results for this variant
were not provided. In both VLSN variants, for which results are presented, a different
path pruning technique is employed to reduce the number of paths examined at each
depth. We will refer to these two variants as VLSN1 and VLSN2. In VLSN1, the best
α 2n paths with the lowest cost at one level are carried forward to the next level to build
larger exchanges. In implementation, α is set to 1 and the maximum path length is set
to 4. By contrast, VLSN2 excludes all paths except for the best path for each node. In
other words, only the initial path from each node that has the lowest cost is allowed to
proceed to the next depth. VLSN2 also first performed a descent to a local optimum at
depth 2 before beginning path enumeration.

Table 4 provides comparisons between the two VLSN algorithms (VLSN1 and VLSN2)
and the EC algorithms (EC1, EC2, and EC3) developed for this study using the same
stopping criterion (SC2). The results for SC1 are also provided for some supplemental
observations. In addition, we provide in Figure 9 a pairwise comparison of the
algorithms in terms of the number of best solutions produced over all problems. The
VLSN algorithms were run using SC2 on a Pentium IV, 2.4 GHz processor and were also
written in the C programming language. SPEC (2000) shows that the processor used in
the VLSN study is equivalent to (just slightly better than) the processor used in the
current study (Intel Itanium, 1.3 GHz). Therefore, the comparisons are as valid as
possible without having algorithms written by the same programmer and run on the
same machine.

 21

 Stopping Criterion 1 (SC1) Stopping Criterion 2 (SC2)
 EC1 EC2 EC3

2-Opt
EC1

2-Opt
VLSN

EC1

EC2 EC3 VLSN1 VLSN2

Problem BKS APD APD APD APD APD APD APD APD APD APD
sko42
sko49
sko56
sko64
sko72
sko81
sko90

sko100a
sko100b
sko100c
sko100d
sko100e
sko100f

15812
23386
34458
48498
66256
90998

115534
152002
153890
147862
149576
149150
149036

0.028
0.199
0.527
0.464
0.691
0.849
0.881
0.661
0.803
0.779
0.862
1.147
0.979

0.293
0.235
0.475
0.243
0.322
0.336
0.305
0.314
0.379
0.731
0.437
0.522
0.567

0.061
0.086
0.259
0.139
0.340
0.271
0.272
0.263
0.226
0.269
0.316
0.198
0.395

0.008
0.053
0.183
0.475
0.827
0.855
0.691
0.739
0.868
1.122
1.007
1.191
1.008

0.000
0.188
0.348
0.334
0.426
0.433
0.573
0.524
0.502
0.498
0.580
0.654
0.621

 0.000
0.063
0.324
0.397
0.705
0.943
0.785
0.617
0.521
1.445
1.019
0.796
1.063

 0.019
0.107
0.305
0.139
0.319
0.364
0.424
0.424
0.436
0.963
0.537
0.692
0.627

0.000
0.039
0.027
0.078
0.250
0.278
0.473
0.340
0.408
0.543
0.517
0.460
0.542

0.000
0.103
0.116
0.177
0.260
0.308
0.407
0.289
0.395
0.331
0.439
0.257
0.326

0.000
0.214
0.226
0.433
0.465
0.516
0.457
0.462
0.550
0.594
0.619
0.654
0.652

Average 0.628 0.397 0.238 0.694 0.437 0.668 0.412 0.304 0.262 0.449
tai20a
tai25a
tai30a
tai35a
tai40a
tai50a
tai60a
tai80a

tai100a

122455319
344355646
637117113
283315445
637250948
458821517
608215054
818415043

1185996137

0.718
0.670
0.645
0.972
0.825
1.058
1.017
0.695
0.563

0.152
0.294
0.178
0.302
0.420
0.732
0.715
0.644
0.600

0.199
0.055
0.137
0.272
0.387
0.726
0.861
0.780
0.654

0.000
0.102
0.402
0.479
0.519
0.802
0.883
0.745
0.567

0.000
0.000
0.016
0.384
1.160
1.813
2.016
2.166
2.266

 0.000
0.000
0.161
0.366
0.550
0.753
0.791
0.714
0.558

0.000
0.000
0.000
0.000
0.274
0.550
0.629
0.681
0.714

0.000
0.000
0.000
0.000
0.219
0.514
0.657
0.730
0.729

0.000
0.000
0.000
0.000
0.687
1.151
1.400
1.459
1.569

0.000
0.000
0.177
0.384
1.099
1.665
1.746
1.957
1.900

Average 0.796 0.449 0.452 0.500 1.091 0.433 0.316 0.317 0.696 0.992
Overall 0.729 0.418 0.326 0.615 0.705 0.571 0.373 0.309 0.440 0.671

Stopping criteria 1: no improving move found in 5000*n iterations; Stopping Criterion 2: 1 hour for ≤ 40,n 2 hours for > 40n

Table 4–EC comparisons with VLSN

 22

Figure 9–Number of instances one algorithm is better than another
(algorithm X, algorithm Y):number of ties

As previously discussed, the EC1 algorithms contained very limited adaptive memory
guidance in the form of a simple tabu list with small tabu tenures. A 2-exchange
version of EC1 is provided to examine the impact of the ejection chain neighborhood.
However, since the VLSN study also provided a 2-exchange algorithm, we can compare
the impact of the minimal short-term memory guidance in the EC1 variant. Comparing
the 2-exchange versions of VLSN and EC1, the VLSN algorithm performs better on the
sko* instances while EC1 is better on the tai* instances. Overall, there is no significant
difference in the performance of the two 2-exchange algorithms, which demonstrates
that the tabu list in the EC1 version had little positive impact other than to prevent
cycling.

Another interesting observation can be made examining the 2-exchange algorithms.
The 2-exchange EC1 algorithm did especially poorly on the sko* instances, losing on 11
of the 13 instances. This could indicate that the restrictiveness of the tabu list was
especially detrimental for this set of instances. Indeed, experimental analysis

 23

conducted during the tuning of the algorithm parameters showed better results (on
average) when smaller tabu tenures are used for the sko* instances. However, those
parameters were not so suitable for tai* instances and we restricted our method to use
the same parameter values for all instances. In contrast, the 2-exchange VLSN revealed
significant difficulty on the larger tai* instances ≥(40),n exceeding the best known
solutions value by more than 2%. In fact, the difference in the characteristics of the
problem instances becomes especially apparent in the larger neighborhoods. This is
also seen to be true when examining the difference between the variable-depth versions
of VLSN and the EC algorithms.

VLSN1 performs very well on the sko* instances. It performs better than EC1 and EC2
on all but one or two instances and completely dominates VLSN2 on the sko* test set.
In general the VLSN algorithms tend to perform better on the sko* instances; however
even in that set both EC2 and EC3 perform better than VLSN2. Only EC3 is competitive
with VLSN1, obtaining better solutions on 5 of the 13 sko* instances and tying on 1.
VLSN1 obtains the best quality solutions on the biggest 7 sko* instances under SC2.

VLSN1 introduces diversity into the search by carrying forth the best 2n paths
regardless of their cost benefit. EC3 brings diversity into the search by introducing
variability in tabu tenure ranges and allowing for multi-starts. This indicates that the
interplay between intensification and diversification of the search may be especially
important for this set of instances. On one hand, restricting the local search may
prevent the methods from reaching good local optimal solutions that are relatively close
in the solution space, but not necessarily within the neighborhood space of the current
2-exchange neighborhood. On the other hand, some appropriate level of diversification
should be maintained in order for the method to explore other regions of the solution
space.

The positive results of VLSN1 for the sko* set seem to indicate that for these instances a
strategy that simultaneously explores intensification and diversification may be more
appropriate than strategies that alternate between the two search strategies. This
speculation is also supported by experiments on landscape analysis for the QAP under
a 2-exchange neighborhood (e.g. Merz and Freisleben, 2000; Stützle, 2006). These
studies show that sko* instances have a smooth landscape with a significantly high
correlation between neighboring solutions. However, local optima distributions show
that good solutions are spread out across the solution space. Hence, the challenge in
these instances is not so much in escaping from local optimality but rather in
determining the regions where the best local optima actually exist. Since local optima in
these landscapes share some degree of similarity it is unlikely that good local optima
exist in the vicinity of a relatively poor local optimum. Although this may establish a
sufficient condition for an algorithm to engage in a stronger diversification search, a
region of high-quality solutions is not necessarily close to a best local optimum. In any
case, the best local optima are likely to be encountered in regions of relatively high-
quality solutions, thus suggesting a somewhat extensive exploration of the search
around these potentially good regions. We conjecture that the relative advantage of
VLSN1 on these sko* instances stem from its breath-first type of local search strategy.
In a depth-first search strategy as in our EC algorithms these issues are addressed by
giving the algorithm sufficient flexibility to explore multiple search paths from local
regions, thus suggesting the advisability of a small tabu tenure as considered in our
EC1, perhaps just large enough to prevent cycling. In this algorithm intensification is
promoted by using small tabu tenure ranges and diversification is achieved by the long
search paths generated by the ejection chain neighborhood. The interplay between
intensification and diversification is obtained by the variable depth moves selected by
the ejection chain algorithm. Short moves keep the search in the vicinity of the current

 24

region while long moves induce the search to explore other regions. A more aggressive
interaction between intensification and diversification results from coupling the
inherent depth-first search of the EC neighborhood with the desirable breath-first
component emphasized in VLSN. This is accomplished in EC2 and EC3 algorithms by
combining larger tabu tenures with an aspiration criterion, and in addition allowing for
multi-starts. On one hand, large tabu tenures implement stronger diversification. On
the other hand, the aspiration prevents the algorithm from overlooking best solutions
while keeping the balance between intensification and diversification.

The symmetric tai* instances appear to behave differently. Both EC2 and EC3 beat or
tie both VLSN algorithms on all 9 problems. EC1 outperforms VLSN1 on 5 of the 9
instances, ties on 2, and outperforms or ties VLSN2 on all 9 instances. For this set of
instances, the interplay between intensification and diversification does not prove to be
as influential. This may be justified by the fact that tai* instances have a highly rugged
fitness landscape structure with far more local optima than sko* instances. Although in
both sko* and tai* test sets local optimal distributions show good solutions spread out
all over the solution space, the (almost) nonexistent correlation between neighboring
solutions in tai* instances makes them more difficult than sko* instances when local
searches are limited to 2-exchange neighborhoods. Since local optima in the tai*
instances are typically very deep and share no similarities, extending the depth in k-
exchange neighborhoods (to high values of k) may be more beneficial than limiting it (to
small values of k) in order to make it possible to explore each level (k) of the
neighborhood more extensively. We conjecture that this is what gives the edge to the EC
algorithms over their VLSN counterpart on the tai* instances. In fact, the best overall
solutions for the larger symmetric tai* instances are split between the EC algorithms.
This trend was exhibited in computational tests where parameter settings or adaptive
memory guidance could be modified to improve results on one test set to the detriment
of the other. With the simple adaptive memory guidance employed in this study, the
parameter settings used were found to provide the best compromise in solution quality
between the two test sets. Future work could include using more sophisticated
adaptive memory techniques to overcome this characteristic.

The results presented in Tables 2, 3, and 4 demonstrate the impact of the ejection chain
neighborhood structure. The significance of the larger embedded neighborhoods is
demonstrated by the improvement of the results obtained by EC1 over the same
algorithm limited to a 2-exchange neighborhood. EC1 implemented a very simple local
search with short tabu tenure and no restriction on depths (levels) explored. In an
overall analysis, the EC algorithms are very competitive with the VLSN algorithms. EC1
performs better than VLSN2 in terms of both solution quality and number of best
solutions, but it is not as good as VLSN1. EC2 provides better average solution quality
than VLSN1, though VLSN1 manages to find a greater number of best solutions. EC2
and EC1 provide better results on 6 of the 22 instances where VLSN1 provides better
results on 12 of the 22 instances against EC2 and 13 of the 22 instances against EC1,
tying on the others. EC3 provides better results on 10 of the 22 instances against
VLSN1. EC3 and VLSN1 tie on 5 instances and VLSN1 provides better results on 7
instances.

VLSN2 does not perform as well as the EC algorithms and is not competitive with
VLSN1. Comparing VLSN2 to the EC algorithms, the worst EC variant (EC1) obtains
better results to 10 out of 22 instances. The two algorithms tie on 3 instances and
VLSN2 wins on 9. EC2 obtains better quality results than VLSN2 on 16 of the 22
instances and ties on 2. VLSN2 obtains the best result on the remaining 4 instances
against EC2. EC3 wins on 18 of the 22 problem instances, they tie on 3, and VLSN2
obtains the best result on one instance.

 25

In summary, no algorithm dominates all the others on all problem instances, and EC
and VLSN seem to be more effective on different test sets. However, EC3 is the overall
winner in terms of average solution quality and number of best solutions. These results
suggest there may be significant value in combining the EC and VLSN strategies, and
that additional adaptive memory guidance can be useful for further improving the EC
approaches.

The results for the EC algorithms using SC1 are also shown in Table 4. This provides
the opportunity to view the difference in solution quality between stopping conditions in
the EC algorithm, disclosing that with longer runtimes significant improvement in
solution quality can be obtained.

4.2 Extended computational analysis

We now extend our analysis to include comparisons with traditional Iterative Local
Search (ILS) and Ant Colony Optimization (ACO) algorithms, which have some
similarities to our multi-start TS algorithms. Comparisons to several of the best of the
more complex metaheuristic algorithms are also given. Tables 5 and 6 provide results
for the following additional algorithms from the literature:

• Robust Tabu Search – RTS (Taillard, 1991)
• Four Iterated Local Search Variants – ILS1, ILS2, ILS3, ILS4 (Stützle, 2006)
• Three Ant Colony Optimization Variants – ACO1, ACO2, ACO3 (Stützle and Dorigo

1999)
• A Genetic Algorithm Hybrid with a modified RTS (GA/MRT) (Drezner 2008)
• An Ant Colony Optimization/Genetic Algorithm/Local Search Hybrid – ACO/GA/LS

Tseng, and S. Liang (2003)
• Three Tabu Search variants –ETS1, ETS2, and ETS3 (Misevicius, 2005)
• Two Population Based ILS Algorithms – ILS5 and ILS6 (Stützle, 2006)
• An Improved Population Based ILS Algorithm – I-ILS6 (Stützle, 2006)

These algorithms were all run on different platforms utilizing different stopping
conditions. Therefore, time comparisons cannot be provided. The best ejection chain
algorithm (EC3) and the best VLSN algorithm (VLSN1) are also shown in the tables both
using stopping criterion SC2 for consistency.

Table 5 provides a comparison of the three EC algorithms developed for this study with
the results obtained for the classical robust tabu search (RTS) algorithm (Taillard,
1991), four variants of the iterative local search (ILS) algorithm (Stützle, 2006), and
three variants an ant colony optimization (ACO) algorithm (Stützle and Dorigo, 1999).
These algorithms are most comparable to EC3 and VLSN2 in terms of structure and the
heuristic guidance employed. Not all algorithms provide solutions for all test instances,
so comparisons are only shown for the overlapping instances. Dash symbols indicate
that results were not provided for that instance by the corresponding algorithm. The
average solution quality over all the instances tested by the corresponding algorithm is
provided at the bottom of each test set. Similar averages over all problems tested are
provided at the bottom of the table.

Although limited to short-term memory components of tabu search and 2-exchange
neighborhoods, RTS has long been one of the most successful tabu search algorithms
for the QAP. Perhaps, due to its excellent tradeoff between algorithmic simplicity and

 26

solution quality, RTS is often used in a large variety of more complex algorithms such
as those discussed later.

All ILS variants use 2-opt local search and perturb the solution using random pairwise
exchanges. To determine a solution from which to restart the search, several options
were considered. In the traditional ILS variant (ILS1), the best solution, which may or
may not be the working solution obtained by the current run of the local search, is
perturbed and then a local search is applied. In the second version (ILS2), a random
restart is employed which straightforwardly replaces the working solution with a
random permutation. The third variant (ILS3) always perturbs the working solution
obtained from the local search. The fourth variant (ILS4) allows worse solutions based
upon a probability, that are then perturbed and the local search restarted. Several
population-based variants of ILS (ILS5, ILS6, I-ILS6) are also proposed. These
algorithms maintain a population of solutions and use ILS to operate on the population.
The third variant, I-ILS6, uses an improved local search from all the previous ILS
algorithms discussed.

ACO uses probabilistic perturbations that build solutions by choosing an assignment
influenced by the search history (pheromone trail). A local search is then applied to the
constructed solution. The first variant (ACO1) modifies the construction phase to use
the pheromone trail to modify the current solution rather than construct a new one.
The other two variants use a typical ACO construction phase but ACO2 applies a 2-opt
local search and ACO3 uses RTS as its local search. The type of memory used in these
ACO algorithms is obviously more complicated than that used by the previous
algorithms, including RTS.

As we can see in Table 5, EC3 is very competitive with RTS. Both algorithms use simple
short-term memory based on tabu tenure restrictions and two levels of aspiration. RTS
beats EC3 in all sko* instances and ties in the only solution where both algorithms
manage to find the best known solution. The reverse situation occurs for the tai*
instances where EC3 ties RTS on the three instances where RTS finds the best known
solution and completely dominates RTS on the remaining instances, yet finding one
more best known solution. The fact that VLSN1 is not as good as RTS on either of the
test sets reinforces the idea that the depth of the neighborhood is particularly relevant.
When comparing EC3 to the ILS and ACO algorithms in Table 5, EC3 appears very
competitive on the sko* instances and completely dominates all four ILS variants and
the three ACO variants on the tai* instances. These results strongly uphold our
conjecture on the potential advantage of the ejection chain neighborhood over the 2-
exchange neighborhood for the tai* instances. For algorithms using the same
neighborhood structure, the starting solution seems to have an effect on the quality of
the solutions produced. The best ILS variant (ILS2) using random restart is superior to
the other three variants that always perturb some solution previously found during the
search. Since a small perturbation is always applied to the local optimum found in an
iteration of the ILS algorithm is seems quite natural that a stronger diversification may
be needed at a restart. This requirement does not seem so relevant when larger
neighborhoods are used. For example, ILS1 and EC3 both restart the search by
perturbing the current best solution; however, EC3 significantly outperforms ILS1 on all
instances of both test sets. Also, both EC3 and VLSN1 outperform ILS2 on average over
all problems tested.

 27

 EC3 VLSN1 RTS ILS1 ILS2 ILS3 ILS4 ACO1 ACO2 ACO3

Problem BKS APD APD APD APD APD APD APD APD APD APD
sko42
sko49
sko56
sko64
sko72
sko81
sko90

sko100a
sko100b
sko100c
sko100d
sko100e
sko100f

15812
23386
34458
48498
66256
90998

115534
152002
153890
147862
149576
149150
149036

0.000
0.039
0.027
0.078
0.250
0.278
0.473
0.340
0.408
0.543
0.517
0.460
0.542

0.000
0.103
0.116
0.177
0.260
0.308
0.407
0.289
0.395
0.331
0.439
0.257
0.326

0.000
0.038
0.010
0.005
0.043
0.051
0.062
0.089
0.056
0.031
0.055
0.041
0.066

0.269
0.226
0.418
0.413
0.383
0.586
0.576
0.358

-
-
-
-
-

 0.010
0.133
0.087
0.068
0.134
0.101
0.131
0.115

-
-
-
-
-

 0.010
0.133
0.087
0.068
0.134
0.100
0.187
0.161

-
-
-
-
-

 0.161
0.139
0.153
0.202
0.294
0.194
0.322
0.257

-
-
-
-
-

0.076
0.141
0.101
0.129
0.277
0.144
0.231

-
-
-
-
-
-

0.015
0.067
0.068
0.042
0.109
0.071
0.192

-
-
-
-
-
-

0.104
0.150
0.118
0.171
0.243
0.223
0.288

-
-
-
-
-
-

Average 0.304 0.262 0.042 0.404 0.097 0.110 0.215 0.157 0.081 0.185
EC3 0.304 0.304 0.304 0.186 0.186 0.186 0.186 0.164 0.164 0.164

VLSN1 0.262 0.262 0.262 0.208 0.208 0.208 0.208 0.196 0.196 0.196
tai20a
tai25a
tai30a
tai35a
tai40a
tai50a
tai60a
tai80a

tai100a

122455319
344355646
637117113
283315445
637250948
458821517
608215054
818415043

1185996137

0.000
0.000
0.000
0.000
0.219
0.514
0.657
0.730
0.729

0.000
0.000
0.000
0.000
0.687
1.151
1.400
1.459
1.569

0.000
0.000
0.000
0.112
0.462
0.882
0.974
1.065
1.071

0.723
1.181
1.304
1.731
2.036
2.127
2.200
1.775

-

0.503
0.876
0.808
1.110
1.319
1.496
1.498
1.198

-

 0.542
0.896
0.989
1.113
1.490
1.491
1.692
1.200

-

0.467
0.823
1.141
1.371
1.491
1.968
2.081
1.576

-

0.675
1.189
1.311
1.762
1.989
2.800
3.070
2.689

-

0.191
0.488
0.359
0.773
0.933
1.236
1.372
1.134

-

0.428
1.751
1.286
1.586
1.131
1.900
2.484
2.103

-
Average 0.317 0.696 0.507 1.635 1.101 1.177 1.365 1.936 0.811 1.584

EC3 0.317 0.317 0.317 0.265 0.265 0.265 0.265 0.265 0.265 0.265
VLSN1 0.696 0.696 0.696 0.587 0.587 0.587 0.587 0.587 0.587 0.587
Overall 0.309 0.440 0.232 1.019 0.599 0.643 0.790 1.106 0.470 0.931

EC3 0.309 0.309 0.309 0.225 0.225 0.225 0.225 0.218 0.218 0.218
VLSN1 0.440 0.440 0.440 0.397 0.397 0.397 0.397 0.405 0.405 0.405

Table 5–Comparisons with multi-start algorithms

 28

Table 6 presents results for some of the best performing tabu search algorithms from
the literature as well as the best performing hybrid genetic algorithms and population-
based iterative local search algorithms. This set of algorithms, including the ETS
implementations, ACO/GA/LS, the population-based ILS algorithms, and GA/MRT, are
some of the more sophisticated and complex heuristics for the QAP. Table 6 uses the
same format as Table 5. The ETS algorithms obtain some of the best results for the
symmetric tai* instances and the hybrid GAs due to Drezner obtain some of the best
results for the sko* instances. Population-based ILS and ACO/GA/LS hybrid
algorithms perform very well on sko* instances competing closely with several GA and
TS hybrid algorithms from the literature, but not as well as GA/MRT. Also, they are not
as competitive on the tai* instances. The information in Table 6 is only intended to
provide a cursory overview of the solution quality of the extended neighborhood
algorithms in contrast to some of the best performing algorithms from the literature.

ETS1, ETS2, and ETS3 are all modified RTS algorithms embedded in multi-start tabu
search approaches using a variety of diversification operators. These tabu search
algorithms modify Taillard’s RTS by removing the aspiration criteria, decreasing the
tabu tenure, and simplifying the tabu conditions. Several diversifying perturbation
schemes were incorporated into these algorithms, including a random pairwise
exchange procedure, a shift procedure, a dichotomic mutation (exchanging halves of the
permutation) and a neighbor exchange mutation (exchanging two adjacent
assignments). The variants test various combinations of these operators. The algorithms
differ by the type and combinations of the perturbation operators applied during the
search. The layering in these TSs are more complicated than those in the current study,
as often several levels of restarting occur with multiple diversification operators. The
ETS algorithms are currently the best performing algorithms for the symmetric tai*
instances but report no results for the sko* instances. EC3, even though much
simpler, approximates quite well the solution quality achieved by the ETS algorithms.

The genetic algorithms due to Drezner are the most successful algorithms for the sko*
test instances. Drezner has presented a series of hybrid GAs for the QAP. The
algorithms differ by the improvement operator used to hybridize the GA. Drezner (2002)
presents three hybrid GAs, the first uses only a strict decent operator to improve the
solutions created by the GA. In the second hybrid GA, the strict decent operator is
replaced with a simple tabu search. In the third hybrid GA, the incorporation of a new
tabu search algorithm, concentric tabu search (Drezner, 2002), proved very successful
on the sko* problems. Concentric tabu search was improved in a subsequent study
(Drezner, 2003), to allow more moves than the original version and again embedded it
within a GA.

Concentric tabu search shares some commonalities with the path-relinking concept. In
concentric tabu search, series of swap moves are iteratively applied to a permutation
until the distance of the working solution is maximally different from the original
solution (or an improved solution is found). In a sense, the “center” solution is serving
as both the solution initiating the search (the initiating solution in path-relinking
terminology) and the solution being modified. The “path” the solutions are following is
guided by the requirement that the solution be different from the original solution. A
move can contribute a point (or two) to the distance (difference) score if the exchange
moves at least one (or two) facilities to locations they did not previously occupy. Since in
concentric tabu search, the reference set is open to all neighboring solutions that
increase the difference from the “center” solution rather than restricted to a pre-selected
subset of reference (or guiding) solutions, a larger number of intermediate solutions are
available than in traditional path-relinking.

 29

The algorithm works by examining all swaps on the “center” solution thereby obtaining
all permutations that are 2 elements different than the “center” solution. A pruning
technique, like those applied in VLSN, is used to reduce the number of permutations of
distance 2 that are carried forward. The pruning technique keeps a defined number K
of the best permutations of distance 2. Swap moves are then performed again on the K
solutions retained. Performing a swap on the permutations of distance 2 may result in
a permutation with distance 3 or distance 4. As new solutions are created, a defined
number of the best solutions at a given distance are kept in lists. Once the search of all
permutations at a given distance is completed, the next distance is explored, and so on.
The algorithm continues this process until either a new best solution is found which
restarts the process, or the maximum distance from the original “center” solution is
reached. All moves made in this algorithm are swaps and the cost calculations
described in Taillard (1991) and Burkard and Rendl (1984) are therefore used. This
approach is novel for a QAP tabu search in that the moves made are guided by the
distance from the original permutation.

While the concentric tabu search has proven to be a successful addition to a hybridized
GA, for the solution of the sko* test instances, Drezner (2008) provided even better
solutions to this test set using a very slightly modified RTS (MRT) incorporated into a
GA (GA/MRT). The only change made to the RTS in GA/MRT is to increase the tabu
tenure range. The QAP appears to be very sensitive to the parameters and adaptive
memory guidance utilized both in the algorithms developed in the current study and
those from the literature. Since GA/MRT provides the best results of the series, the
earlier Drezner hybrid GAs are not included in the tables below. GA/MRT provides
superior results to all other algorithms on the sko* instances. Results are not provided
for the hybrid GAs on the tai* instances.

When comparing the large neighborhood algorithms to the population-based ILS and
ACO/GA/LS hybrids, we can see that these algorithms perform better than EC3 and
VLSN1 on the sko* test set, but they all lose against EC3 on the tai* instances. EC3
outperforms ACO/GS/LS on all 9 tai* instances. EC3 also outperforms ILS5 and ILS6
in all 9 tai* instances and wins on all but the 2 largest instances against I-ILS6. VLSN1
wins against ILS5 and ILS6 on the tai* instances, but it is not competitive with
ACO/GS/LS or I-ILS6.

These results suggest promise for the exploration of extended neighborhoods.

 30

 EC3 VLSN1 ETS1 ETS2 ETS3 ILS5 ILS6 I-ILS6 ACO/GA/LS GA/MRT

Problem BKS APD APD APD APD APD APD APD APD APD APD
sko42
sko49
sko56
sko64
sko72
sko81
sko90

sko100a
sko100b
sko100c
sko100d
sko100e
sko100f

15812
23386
34458
48498
66256
90998

115534
152002
153890
147862
149576
149150
149036

0.000
0.039
0.027
0.078
0.250
0.278
0.473
0.340
0.408
0.543
0.517
0.460
0.542

0.000
0.103
0.116
0.177
0.260
0.308
0.407
0.289
0.395
0.331
0.439
0.257
0.326

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

 -
-
-
-
-
-
-
-
-
-
-
-
-

0.022
0.090
0.102
0.079
0.139
0.100
0.262
0.191

-
-
-
-
-

 0.000
0.068
0.071
0.057
0.085
0.082
0.128
0.109

-
-
-
-
-

0.000
0.000
0.000
0.000
0.000
0.001
0.007
0.006
0.012
0.007
0.002
0.021
0.037

0.000
0.060
0.010
0.000
0.020
0.030
0.040
0.020
0.010
0.000
0.030
0.000
0.030

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001

Average 0.304 0.262 0.123 0.075 0.007 0.019 0.000
EC3 0.304 0.304 0.186 0.186 0.304 0.304 0.304

VLSN1 0.262 0.262 0.208 0.208 0.262 0.262 0.262
tai20a
tai25a
tai30a
tai35a
tai40a
tai50a
tai60a
tai80a

tai100a

122455319
344355646
637117113
283315445
637250948
458821517
608215054
818415043

1185996137

0.000
0.000
0.000
0.000
0.219
0.514
0.657
0.730
0.729

0.000
0.000
0.000
0.000
0.687
1.151
1.400
1.459
1.569

0.000
0.037
0.003
0.000
0.167
0.322
0.570
0.321
0.367

0.000
0.000
0.041
0.000
0.130
0.354
0.603
0.390
0.371

0.000
0.015
0.000
0.000
0.173
0.388
0.677
0.405
0.441

0.500
0.869
0.707
1.010
1.305
1.574
1.622
1.219

-

 0.344
0.656
0.668
0.901
1.082
1.211
1.349
1.029

-

-
0.000
0.000
0.000
0.280
0.610
0.820
0.620
0.690

0.110
0.290
0.340
0.490
0.590
0.850
0.030
0.860
0.800

-
-
-
-
-
-
-
-
-

Average 0.317 0.696 0.199 0.210 0.233 1.101 0.905 0.378 0.484
EC3 0.317 0.317 0.317 0.317 0.317 0.265 0.265 0.356 0.317

VLSN1 0.696 0.696 0.696 0.696 0.696 0.587 0.587 0.783 0.696
Overall 0.309 0.440 0.612 0.490 0.148 0.210

EC3 0.309 0.309 0.225 0.225 0.324 0.309
VLSN1 0.440 0.440 0.397 0.397 0.461 0.440

Table 6–Comparisons with advanced metaheuristic algorithms

 31

5. Conclusions

This study examined the use of ejection chains for the QAP. The results indicate the
use of these embedded neighborhood structures result in higher solution quality than
obtained by using the traditional 2-exchange neighborhood. We also demonstrate the
power of coupling this neighborhood definition with more sophisticated adaptive
memory guidance. Our resulting ejection chain approaches are shown to be competitive
with recently proposed path enumeration techniques embodied in very large search
neighborhood (VLSN) methods.

Future studies could examine integrating the ejection chain algorithms with the VLSN
methods and with higher level adaptive memory techniques such as path relinking.
Our computational testing showed the parameters chosen for the tabu search
framework and the multi-start variants produced the best results from the several
combinations examined, but more thorough analysis of these parameters could also
provide better quality results, particularly by means of dynamic parameter
manipulation. The addition of the diversification method in the EC3 algorithm
disclosed the importance of strategic diversification to find enhanced solutions, and we
anticipate that additional attention to diversification strategies may also yield gains for
future algorithms.

References

Ahuja, R., Jha, K., Orlin, J., and Sharma, D., (2007) “Very Large-Scale Neighborhood
Search for the Quadratic Assignment Problem,” INFORMS Journal on Computing, 19(4),
646-657.

Ahuja, R., Orlin, J., and Tiwari, A., (2000) “A Greedy Genetic Algorithm for the
Quadratic Assignment Problem,” Computers & Operations Research, 27, 917-934.

Burkard, R.E., and Rendl, F. (1984) “A thermodynamically motivated simulation
procedure for combinatorial optimization problems,” European Journal of Operational
Research, 17, 169-174.

Cavique, L., Rego, C., and Themido, I. (1999) “Subgraph Ejection Chains and Tabu
Search for the Crew Scheduling Problem,” Journal of Operational Research Society, 50,
608–616.

Burkard, R., Karisch, S. and Rendl, F. (1997) “QAPLIB – A Quadratic Assignment
Problem Library,” Journal of Global Optimization, 10, 391-403.

Cela, E. (1998) The Quadratic Assignment Problem: Theory and Algorithms, Kluwer
Academic Publishers.

Cung, V-D., Mautor, T., Michelon, P., Tavares, A. (1996) “Scatter Search for the
Quadratic Assignment Problem,” Proceedings of the IEEE International Conference on
Evolutionary Computation, IEEE Press, 165-169.

Drezner, Z. (2005) “The Extended Concentric Tabu for the Quadratic Assignment
Problem,” European Journal of Operational Research, 160, 416-422.

 32

Drezner, Z. (2003) “A New Genetic Algorithm for the Quadratic Assignment Problem,”
INFORMS Journal on Computing, 15(3), 320-330.

Drezner, Z. (2002) “A New Heuristic for the Quadratic Assignment Problem,” Journal of
Applied Mathematics and Decision Sciences,” 6(3), 143-153.

Gamboa, D., Rego, C. and Glover, F. (2005) “Data Structures and Ejection Chains for
Solving Large-Scale Traveling Salesman Problems,” European Journal of Operational
Research, 160, 154-171.

Fleurent, C. and Glover, F. (1999) "Improved Constructive Multistart Strategies for the
Quadratic Assignment Problem Using Adaptive Memory," INFORMS Journal on
Computing, 11(2), 198-204.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” Artificial
Evolution, J.-K. Hao et al., eds., LNCS 1363, Springer-Verlag, 13-54.

Glover, F. (1991) “Multilevel Tabu Search and Embedded Search Neighborhoods for the
Traveling Salesman Problem,” Manuscript, Leeds School of Business, University of
Colorado, Boulder, CO.

Glover, F. (1992) “New Ejection Chain and Alternating Path Methods for Traveling
Salesman Problems,” Computer Science and Operations Research, 449-509.

Glover, F. (1996) “Ejection Chains, Reference Structures and Alternating Path Methods
for Traveling Salesman Problems,” Discrete Applied Mathematics, 65, 223-253.

James, T., Rego, C., and Glover, F. (2005) “Sequential and Parallel Path-Relinking
Algorithms for the Quadratic Assignment Problem,” IEEE Intelligent Systems, 20(4), 58-
65.

Koopmans, T., and Beckmann, M. (1957) “Assignment Problems and the Location of
Economic Activities,” Econometrica, 25(1) 53-76.

Li, Y, Pardalos, P.M., and Resende, M.G.C., (1994) “A greedy randomized adaptive
search procedure for the quadratic assignment problem”, Quadratic assignment and
related problems, P.M. Pardalos and H. Wolkowicz, eds., DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, vol. 16, pp. 237-261.

Merz, P., and Freisleben, B. (2000) “Fitness landscape analysis and memetic algorithms
for the quadratic assignment problem,” IEEE Trans. Evolutionary Computation 4(4), 337-
352.

Misevicius, A. (2005) “A Tabu Search Algorithm for the Quadratic Assignment Problem,”
Computational Optimization and Applications, 30, 95-111.

Misevicius, A. (2004) “An Improved Hybrid Genetic Algorithm: New Results for the
Quadratic Assignment Problem,” Knowledge-Based Systems, 17, 65-73.

Misevicius, A. (2003) “Genetic Algorithm Hybridized with Ruin and Recreate Procedure:
Application to the Quadratic Assignment Problem,” Knowledge-Based Systems, 16, 261-
268.

 33

Oliveira, C.A., Pardalos, P.M., and Resende, M.G.C. (2004) “GRASP with path-relinking
for the quadratic assignment problem, "Efficient and Experimental Algorithms," C.C.
Ribeiro and S.L. Martins (Eds.), Lecture Notes in Computer Science, vol. 3059, 356-368,
Springer-Verlag.

Rego, C. (1998a) “Relaxed Tours and Path Ejections for the Traveling Salesman
Problem,” European Journal of Operational Research, 106, 522-538.

Rego, C. (1998b) A Subpath Ejection Method for the Vehicle Routing Problem.
Management Science, 44:10, 1447-1459.

Rego, C. (2001) “Node Ejection Chains for the Vehicle Routing Problem: Sequential and
Parallel Algorithms”, Parallel Computing, 27, 201-222.

SPEC. (2000). “SPEC Benchmark Results”, http://www.spec.org.

Stützle, T. and Dorigo, M. (1999) “ACO Algorithms for the Quadratic Assignment
Problem,” New Ideas for Optimization, D. Corne, M. Dorigo, and F. Glover, eds.,
McGraw-Hill, 33-50.

Stützle, T. (2006) “Iterative Local Search for the Quadratic Assignment Problem,”
European Journal of Operational Research, 174, 1519-1539.

Taillard, E. (1991) “Robust Taboo Search for the Quadratic Assignment Problem,”
Parallel Computing, 17, 443-455.

Tseng, L., and and Liang, S. (2005) “A hybrid metaheuristic for the quadratic
assignment problem,” Computational Optimization and Applications, 34(1), 85-113.

Yagiura, M. Ibaraki, T. and Glover, F. (2004) “An Ejection Chain Approach for the
Generalized Assignment Problem,” INFORMS Journal on Computing, 16, 2, 133-151.

