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Abstract – In this study we present a new tabu search algorithm for the quadratic 
assignment problem (QAP) that utilizes an embedded neighborhood construction called 
an ejection chain.   Our ejection chain approach provides a combinatorial leverage 
effect, where the size of the neighborhood grows multiplicatively while the effort of 
finding a best move in the neighborhood grows only additively. Our results illustrate 
that significant improvement in solution quality is obtained in comparison to the 
traditional swap neighborhood.  We also develop two multi-start tabu search algorithms 
utilizing the ejection chain approach in order to demonstrate the power of embedding 
this neighborhood construction within a more sophisticated heuristic framework.  
Comparisons to the best large neighborhood approaches from the literature are 
presented.     
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1. Introduction 

The quadratic assignment problem (QAP) is a classical combinatorial optimization 
problem that has garnered much attention due to both its large number of applications 
and its solution complexity.  Originally used to model a location problem in the 1950’s, 
the QAP is computationally very difficult to solve which makes it an ideal candidate for 
testing new algorithmic approaches. While facility location problems remain the most 
popular application area for the quadratic assignment problem, many other 
applications for this problem exist including scheduling problems, statistical data 
analysis, information retrieval, as well as problems in transportation. The attractiveness 
of the QAP is also due to the fact that many other combinatorial optimization problems 
can be formulated as a QAP, including the traveling salesman problem, the maximum 
clique problem and the graph partitioning problem. (See Cela (1998) for a survey of both 
classical and practical applications.)  
 
In the context of facility location problems, the QAP can be stated as follows. Let  

1{ , , }nF f f= … be a set of n facilities to be placed in exactly n locations represented by 
the set 1{ , , }.nL l l= … ( )ikA a=  is a matrix of distances between pairs of locations ,il

,kl L∈  and ( )jlB b=  is an associated matrix of flows to be transmitted (or shipped) 

between pairs of facilities ,jf .lf F∈  The objective is to find a minimum cost assignment 

of facilities to locations considering both the flow of materials between facilities and the 
distance between locations.   
 
In mathematical terms, each assignment can be defined as a permutation π  of the 
underlying index set = …{1, , },N n  i.e. π →: .N N  Hence, if facility j  is assigned to 
location i  and facility l  is assigned to location ,k  the cost of the flow between facilities 

π= ( )j i  and π= ( )l k  is π π( ) ( ).ik i ka b  The objective of the QAP is to find a permutation 

vector π ∈Πn that minimizes the total assignment cost, where Πn is the set of all 
possible permutations of N. Such a formulation can be generically described as 
 

π π
π∈Π

= =
∑∑ ( ) ( )

1 1

.
n

n n

ij i j
i j

Minimize a b  

 
Heuristic approaches for the QAP abound in the literature wherein local search is 
commonly used as a basic component to explore the solution space.  Among these 
heuristics are tabu search (Taillard, 1991; Misevicius, 2005; James, Rego and Glover, 
2009), scatter search (Cung et al., 1996), genetic algorithms (Fleurent and Ferland, 
1994; Ahuja, Orlin and Tiwari, 2000; Misevicius, 2003, 2004; Drezner, 2003, 2005), ant 
colony optimization (Stutzle and Dorigo, 1999), GRASP (Li, Pardalos and Resende, 
1994), GRASP with path relinking (Oliveira, Pardalos and Resende, 2004), and path 
relinking (James, Rego and Glover, 2005).   
 
Local search methods rely on the exploration of a defined neighborhood to generate 
moves in the solution space of the problem under consideration.  In the case of the 
QAP, this neighborhood is typically a 2-exchange neighborhood that swaps the location 
of two facilities at each step of the local search process. The exploration of larger 
neighborhoods where the simultaneous movement of k nodes of the permutation can be 
examined is attractive though computationally very demanding.  
 
Ahuja et al. (2007) introduce a very large scale neighborhood search (VLSN) method for 
the QAP, which constitutes an important advance in the creation of more complex 
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neighborhoods for the problem.  This algorithm iteratively examines all paths (or 
exchanges of nodes) of increasing depth, where the maximum depth is a specified 
parameter.  The VLSN algorithm considers all moves (or a defined subset of moves) of a 
given depth before proceeding to the next depth.  Due to the computational complexity 
of the full path enumeration scheme presented, a maximum path length of k=4 was 
settled upon in their study.   
 
Ejection chain methods constitute a special class of very large neighborhoods that have 
proved highly promising in the solution of difficult and large scale combinatorial 
optimization problems.  In general, ejection chains provide the ability to strategically 
extend simpler neighborhoods, such as those consisting of exchange (swap) moves or 
insert (shift) moves, to create more complex neighborhoods that can be generated with 
an efficient investment of effort (Glover, 1991).  Some forms of ejection chain methods 
make use of a reference structure as a framework for generating moves at each level of 
the ejection chain construction (Glover, 1992, 1996).   
 
Examples of successful applications of various types of ejection chains include: the 
multi-node insertion and exchange ejection chain method for the classical vehicle 
routing problem (Rego 2001), the long-chain shift neighborhood for the generalized 
assignment problem (Yagiura,  Ibaraki and Glover, 2004), the stem-and-cycle (S&C) and 
the doubly-rooted S&C reference structures for the traveling salesman problem (Rego, 
1998a, Rego et al. 2006), the flower reference structure for the vehicle routing problem 
(Rego, 1998b), and the subgraph ejection chain method for the crew scheduling 
problem (Cavique, Rego and Themido, 1999).   
 
The key contribution of this paper is the development of a specialized ejection chain 
algorithm for the QAP, drawing on a proposal sketched in Glover (1991), which has 
useful features in the QAP setting. The approach utilizes the ejection chain structure to 
build successively larger exchanges based upon the elements chosen in the proceeding 
chain.  In this manner, only a selected subset of all possible chains at each depth is 
considered for a given permutation. This process allows the method to quickly probe 
larger neighborhoods, with no constraints on the depths examined, by constructing 
these chains of moves based upon previously promising structures. More importantly, 
these ejection chain neighborhoods exhibit a special property called combinatorial 
leverage, where a level k neighborhood contains ( )knO  elements, but a potentially best 
member for a k-neighborhood >( 2)k  is determined with k examinations of O( )n  
“component” elements.   
 
We embed our ejection chain method within a tabu search (TS) framework to provide 
strategic control over the formation of the chains.  The first version of our TS method is 
extremely simple, using memory only in the role of “bookkeeping” operations instead of 
in the role of performing advanced guidance. Our chief purpose in examining this 
simple structure is to show that the ejection chain neighborhood obtains better 
solutions than an exchange neighborhood in the same framework.  We then extend this 
basic framework to present two multi-start tabu search variants that yield solutions of 
higher quality and demonstrate the advantages of embedding ejection chains within a 
more sophisticated metaheuristic.  We also provide computational comparisons to 
previous large neighborhood approaches.   
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2. The Ejection Chain Method 

 
Our ejection chain method extends the classical 2-exchange (or swap) neighborhood for 
the QAP to effectively create more general k-exchange neighborhoods where k can take 
any integer value between 2 and n. The method may be conceived as providing a 
variable depth neighborhood that determines the value of k dynamically according to the 
current state of the search.   
 
Underlying a general ejection chain design, exchange moves are successively embedded 
in the ejection chain construction, level by level, and are driven by the evaluation of two 
types of interrelated moves: (1) an ejection move, which extends the depth of the 
neighborhood by generating an intermediate (reference) structure; and (2) a trial move, 
which creates a feasible solution from the intermediate structure provided by the 
ejection move. The structure obtained with the application of the trial move is called a 
trial solution.  
 
Our QAP ejection chain method constitutes a node-based ejection chain model where 
facilities are associated with nodes in a graph which are to be assigned to locations. In 
this context the method implements a type of multi-node exchange move, which can be 
seen as a series of swap moves for the QAP.  
 
2.1 The Ejection Chain Neighborhood 
 
We represent a QAP solution as a perfect matching in a bipartite graph. Let 

= ∪ ×( , )G F L F L  be a (complete) bipartite graph with 1{ , , }nF f f= …  representing 
facilities and = …1{ , , }nL l l  representing locations. A solution for the QAP can be defined 
by a partial graph = ∪ ⊂ ×( , )S F L E F L  such that ∈( , )i jf l E  if and only if facility if  is 

assigned to location jl  and no two arcs are incident to the same node.  

 
An ejection chain neighborhood can be defined on a subgraph = ( , )H W T  of S  where 

= … …0 0{( , ), ,( , ), ( , )}k k l lT f l f l f l  is a set of arcs representing +1l  levels of an ejection 

chain, which we denote by == ∪ 0 {( , )}.l k k
kT f l  An ejection results by moving a facility if  

from location jl  to a new location ql  occupied by another facility ,pf  disconnecting pf
from its location. In terms of the aforementioned graph formulation, this move is 
equivalent to deleting arcs ( , ),i jf l  ( , ),p qf l  and inserting an arc ( , ).i qf l  Let k be a level of 

the chain, each node kf  ejects the node +1kf  ending with the ejection of the node .lf  
As a result, an ejection chain of +1l  levels is the replacement of T by 

−
== ∪ 1
1' {( , )},l k k

kT f l  transforming S into a disconnected graph. In other words, arcs 

= …( , ) ( 0, , )k kf l k l  are successively replaced by arcs − = …1( , ) ( 1, , ).k kf l k l  Because lf  is 
not assigned to any location, this transformation does not represent a complete 
transition from the current solution S to a new feasible solution '.S   However, the 
complete transition can be obtained by a trial move that connects the graph by simply 
inserting the arc 0( , ).lf l  Let ''T  be the set defined by the arc added by the trial move, 
the new neighboring solution is obtained as = ∪ ∪ −' ' '' .S S T T T   
 
The general model is illustrated in Figure 1 for three levels (0, 1, and 2) of an ejection 
chain.   Diagram A depicts the ejection moves performed throughout the ejection chain, 
and diagrams B and C illustrate the connected graphs obtained by the trial moves at 
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levels 1 and 2, respectively.  Dotted lines represent the set T associated with original 
assignments in the solution S that were affected by the ejection chain process. Likewise, 
solid lines denote the sets 'T  and ''T  representing the new assignments made by the 
ejection moves and the associated trial moves. Specifically, for level 1, we have 

= {( , ),( , )},T i j p q  =' {( , )},T i q  and ='' {( , )}.T p j  By extension, for level 2, we have 
= {( , ),( , ),( , )},T i j p q r s  =' {( , ),( , )},T i q p s  and ='' {( , )}.T r j   
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A. Ejection Moves 

 
B. Trial Move at Level 1 

 
C. Trial Move at Level 2 

 
Figure 1–Illustration of two levels of an ejection chain for the QAP 

 
The process continues through additional nodes of G until a suitable termination 
criterion is met. The adaptation of the ejection chain idea to this setting may be viewed 
as a generalization of a weighted alternating path approach, as applied in the solution 
of matching problems.  
 
 
2.2 The Ejection Chain Construction 
 
The evaluation of moves is a critical factor in building an ejection chain. Handled 
appropriately, the evaluation of ejection and trial moves yields an important form of 
combinatorial leverage in the creation of k-exchange neighborhoods of the type exploited 
in this study. In our construction, the number of moves represented by a level k 
neighborhood is multiplicatively greater than the number of moves in a level k-1 
neighborhood, but the best move from the neighborhoods at each individual level >( 1)k  
can be determined by adding only the effort required to examine the neighborhood of a 
single node.  In particular, the number of moves composing the first, second, and third 
levels are O 2( ),n  O 3( ),n  and O 4( )n , but the best member of level two and three 
neighborhoods can be found by adding only O( )n  effort to the work expended to 
determine the best first level move. The method is based on the principle of capturing 
relevant component moves in successive neighborhoods as a way to generate good 
compound moves—potentially the best in the associated k-level neighborhood.  
 
To understand the operation of these moves, consider starting with a simple 2-exchange 
neighborhood. If the best 2-exchange is not improving, there may be a sequence of 
moves going beyond 2-exchanges that can do better. For instance, the compound move 
exemplified in the diagram C of Figure 1 corresponds to two successive 2-exchange 
moves, where facility π= ( )i j  is first exchanged with facility π= ( )p q , and then π= ( )p j  
is exchanged with π= ( ).r s  Since location j  is involved in both 2-exchange moves, this 
neighborhood implements a 3-exchange move. Accordingly, a −1k  level ejection chain 
neighborhood of this type is shown to implement general k-exchange moves. It follows 
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that the second level neighborhood contains O 3( )n  moves (barring the use of candidate 
lists) since each of the n  choices for i  can eject O( )n  alternatives for node p , which in 
turn can eject O( )n  other alternatives. However, we can identify the best move from a 

closely related O 3( )n  neighborhood by one application of O 2( )n  effort and one of ( )nO  

effort. The O 3( )n  neighborhood we treat is actually less encompassing than the one 
indicated, as a result of a construction that avoids duplications among certain nodes at 
different levels to insure the legitimacy of the compound moves ultimately produced. As 
long as the number of levels is small relative to n, the combinatorial leverage is not 
significantly affected by this legitimacy-preserving construction. On the other hand, 
there can be advantages to extending the number of levels for the purpose of inducing a 
diversification effect to overcome local optimality. 
 
To evaluate the change in solution cost created by a compound move at a given level k 
of an ejection chain, it is convenient to subdivide these changes into two fundamental 
component operations: disconnecting the facility currently assigned to location ,j  and 
relocating facility i  to location .j  Denote the first ejected node (which initiates the 
chain) by the top node t, and the current ejected node by the bottom node b. We let π ( )i  
represent the facility at location i  in a solution corresponding to a trial ejection chain 
under consideration, and π '( )i  represent the facility at location i  in a current solution.  
 
Because the selection of the initial top and bottom nodes requires the evaluation of the 
trial move that is made after ejecting the potential bottom node, the relocation of the 
bottom node into the position vacated by the top node must be evaluated before 
relocating the top node. This particularity makes the relocation operation at the first 
level of the ejection chain different from the relocations used in the ejection and trial 
moves performed at higher levels of the chain (where the relocation of the current 
bottom node is evaluated after the bottom node at the previous level already occupies 
its new position).  
 
For this reason, it is convenient to define a special relocation operation aimed at 
circularizing the ejection move at the first level of the ejection chain. The cost changes 
associated with these operations may be expressed as follows: 
 

Disconnection value: 
 

π π
=

= − ≠∑ ( ) ( )
1

( )   ,
n

h j h j
h

j a b h j tD  

 

Relocation value: π
=

= ≠∑ ( )
1

( , )         ,
n

jh i h
h

i j a b h j tR  

 

Circularization value: 
π π

π π

=

=

⎧
≠⎪

⎪
= ⎨

⎪ = ≠⎪
⎩

∑

∑

( ) ( )
1

( ) ( )
1

  ,

( )   

  ,

n

th j h
h
n

th t h
h

a b h j t

j

a b h j h t

C  

 
 
Hence, for the symmetric QAP, the actual solution cost change associated with these 
operations is twice the value obtained by the corresponding operation. The 
generalization of these operations to the asymmetric variant of the problem can be 
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obtained by simply creating additional product terms that switch the indexes of the 
product terms above and adding these new terms to the preceding expressions.  
 
Let ejection value denote the solution cost change associated with the ejection moves, 
and let trial value denote the solution cost change associated with a trial move. Then, 
an ejection chain of l levels satisfying the requirements of legitimacy may be recursively 
evaluated as follows: 
 

Ejection value: 
 

π

π −

⎧ + + =⎪= ⎨
− + + < ≤⎪⎩

1

( ) ( ) ( ( ), ) 1
( )

( 1) ( ) ( '( ), ) 1

k k

k k k

t b t b k
k

k b b b k l

D D R

D R
E

E
 

 

Trial value: 
π

⎧ + =⎪∆ = ⎨
+ < ≤⎪⎩

( ) ( ) 1
( )

( ) ( '( ), ) 1

k

k

k b k
k

k b t k l

E C

E R
 

 
 
Letting ( )Z S  be the cost of the current QAP solution S, the value of a trial solution kS  

obtained at a level k of the ejection chain is given by = + ∆( ) ( ) 2 ( )kZ S Z S k  for the 
symmetric case. As previously mentioned, for the asymmetric case, the last term would 
include the reverse products in D, R, and C rather than being doubled. The method 

keeps track of the level *k  where the best trial solution has been found, which 
corresponds to the depth of the compound move applied to the current solution S  so as 
to obtain the new neighboring solution '.S  Figure 2 gives an example of these 
calculations for the evaluation of two levels of an ejection chain. To simplify the 
illustration and keep the equations short, the example considers the symmetric QAP 
and assumes that the transition to a new neighboring solution is performed at level two. 
 
 
Illustrative example: 
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= 4,2,3,1S  
 
 

Level 1: Ejection Move 
 

= − − −12 24 23 23 24 12(2) a b a b a bD
= − −13 34 34 13(3) a b a bD  
= +31 24 34 12(2,3) a b a bR  

= + +(1) (2) (3) (2,3)D D RE  
 

Level 1: Trial Move 
 

= + +12 34 23 23 24 13(3) a b a b a bC
∆ = +(1) (1) (3)CE  

=1 4,3,2,1S  

= + ∆1( ) ( ) 2 (1)Z S Z S  
 



 8

2

3

1

2

3

Facility Location

1

4 4
 

2

3

1

2

3

Facility Location

1

4 4
 

2

3

1

2

3

Facility Location

1

4 4
 

Level 2: Ejection Move 
 

= − −14 14 34 12(4) a b a bD  
= +14 34 34 23(3,4) a b a bR

= + +(2) (1) (4) (3,4)D RE E  
 
 

Level 2: Trial Move 
 

= + +12 14 23 12 24 13(1,2) a b a b a bR  
∆ = +(2) (2) (1,2)RE  

=2 4,1,2,3S  

= + ∆2( ) ( ) 2 (2)Z S Z S  

Final Solution = 2'S S  

 
Figure 2–Evaluation of an ejection chain of two levels 

 
In the illustration, the chain starts with = 2t  and =1 3b  as the initial top and bottom 
nodes, respectively. The first operations consist of disconnecting these two nodes from 
the graph and relocating (facility) node 2 in the location previously occupied by node 3, 
keeping node 2 disconnected. The algebraic sum of these three operations gives the 
value of the ejection move (1)E  for the first level of the chain. The value of the trial move 
∆(1)  associated with the current ejection is obtained by circularizing the chain, 
relocating the current ejected node 3 to occupy the location vacated by the top node 2. 
At this point, the value of the corresponding trial solution 1( )Z S  can be calculated by 
adding the circularization value to the value of the starting solution. The second level is 
created by choosing facility 1 at location 4 to be ejected by the currently disconnected 
(bottom) node =1 3b , thus setting  =2 4.b  The new ejection value is then computed by 
adding the disconnection and relocation values (4)D  and (3,4)R  of the current ejection 
to the previously obtained ejection value (1).E  Finally, the new trial value ∆(2)  is 
obtained by adding the relocation value of facility 1 into the original position of the top 
node to the current ejection value.  
 
2.2 The Ejection Chain Procedure 
 
The ejection chain method begins by identifying the best local move for each facility j, 
which constitutes removing j from its current location and relocating it in the position 
occupied by a facility l, which is thereby ejected. (The method can also start by looking 
at each l and finding the best j to replace it.) The first level of the ejection chain consists 
of selecting initial chains based on performing a series of best 2-exchange moves. 
Notably, such a move corresponds to simultaneously determining the best initial node 
to be ejected and the best node to occupy the location of the ejected node. The chain 
grows by selecting a new node to be ejected by the previously ejected node. Under the 
natural restriction that prevents an element from being moved twice, the chain can 
continue to grow until all n nodes have been ejected. The pseudocode for the ejection 
chain procedure is sketched in Figure 3. 
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Figure 3–The ejection chain procedure 

 

3. Tabu Search Algorithms 

 
Rudimentary tabu search (TS) approaches of the type considered here employ short 
term memory structures to forbid moves that lead to solutions recently visited 
(rendering these moves tabu).  One or more aspiration criteria are typically employed 
that allows the tabu status of a move to be overridden when the move exhibits desirable 
characteristics.  More advanced TS implementations include the use of long term 
memory to restrict or encourage moves based on frequency and logical analysis, and 
incorporate intensification and diversification strategies to encourage the search 
towards promising and unexplored regions of the search space, respectively.  For a 
comprehensive treatment of TS, see Glover and Laguna (1997).     
 
The first TS approach we consider, denoted EC1, is used only to provide a comparison 
between different neighborhoods, and minimizes the TS mechanisms employed.  EC1 
uses a tabu restriction that renders moves tabu for only a short period and is used to 
compare the classical swap neighborhood to the ejection chain neighborhood.  We then 
develop two additional tabu search algorithms denoted EC2 and EC3, using a multi-
start design to provide a basic form of diversification.  While still utilizing only simple 
TS strategies, these algorithms illustrate the potential of the ejection chain approach 
when embedded within a slightly more advanced framework.   

Step 0. Initialization 
(a) Let π  be the permutation associated with a starting solution S. 
(b) Set k=1, = ∅.ke  

Step 1. Create the first level of the ejection chain 
(a) Determine elements t and kb  that produce the lowest trial value ∆( )k  over all 

elements ∈, ;kt b N ≠ .kt b   Let ( )kE  be the corresponding ejection value. 
(b) Set − =1 { },ke t  −= ∪1 { }.k k ke e b  Let =*k k  be the current best level. 
(c) Update current trial solution by setting π π=( ) ( )kt b  and π π=( ) '( ).kb t  
(d) If =k L go to Step 3. Otherwise go to Step 2. 

Step 2. Grow the chain to further levels 
(a) Set k=k+1. 
(b) Determine the new element kb that minimizes the ejection value ( )kE  over all 

elements ∈ ∉; .k k kb N b e  
(c) Set −= ∪1 { }.k k ke e b  
(d) Update current trial solution by setting π π=( ) ( )kt b  and π −= 1( ) .k kb b   
(e) Compute trial value ∆( )k  for the current level k. 
(f) Keep track of the best level k* that produced the best trial value.  
(g) If k<L and <ke n  return to Step 2(a). Otherwise go to Step 3. 

Step 3. Perform the compound move 
(a) Apply to S the sequence of ejection moves in *,ke  recursively. 
(b) Perform the trial move on S for the level k* to create a new solution '.S  
(c) Compute the cost ( ')Z S  of the new current solution.  
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3.1 The basic ejection chain algorithm: EC1 
     
Starting from a randomly generated initial permutation, the EC1 tabu search algorithm 
utilizes a tabu list to restrict only the choice of the initial top and bottom nodes of the 
ejection chain construction.  Once the initial nodes of a chain are selected, a tabu 
tenure is chosen for each of the two nodes that determines the number of subsequent 
iterations in which these nodes are tabu, meaning in this case that they are prevented 
from starting another chain.  Since these tabu restrictions only apply to the two initial 
nodes, associated checking and updating of the tabu list are implemented in Step 1(a) 
of the ejection chain procedure of Figure 3. An aspiration criterion is not used in EC1 to 
override the tabu restrictions, since we give them a very small tenure. To obtain a direct 
comparison of the neighborhoods, a 2-exchange (or swap) neighborhood version of EC1 
was also implemented by restricting the chain length to two nodes, i.e. =1.L   The EC1 
algorithm imposes a minimum amount of heuristic guidance on the search and 
illuminates the impact of the neighborhood definition utilized. As a basis for this we 
keep track of the number of consecutive iterations with no improvement of the global 
best solution ( NF ) and stop the algorithm when this counter reaches a predefined 
maximum number of failures ( ).MF  The basic algorithm is shown in Figure 4. 
 
3.2 Multi-start ejection chain algorithms: EC2 and EC3 
 
Multi-start algorithms seek to perturb the standard search path by periodically re-
launching the search from a new initial configuration. A multi-start tabu search for the 
QAP is given by Fleurent & Glover (1999) where a local search is iteratively applied to 
solutions built by a constructive method tailored to provide high quality starting 
solutions.  Another approach for diversifying the solutions generated is to make 
parameter adjustments to influence the trajectory of the search. While such an 
approach is not a multi-start approach in the classical sense, it likewise leads to a new 
solution that may be interpreted as a new starting point for the search, and hence for 
convenience we will refer to it as a multi-start procedure in the discussions of this 
paper. The multi-start procedures introduced in the current study are of both types.   
 
EC2 and EC3 differ in the solution that ultimately replaces the current working 
permutation when the algorithm is restarted. Both algorithms impose a simple tabu 
restriction on the initial nodes chosen as considered in EC1.  However, for these multi-
start variants the tabu tenure is increased and an aspiration criterion is applied that 
allows a tabu move to be made under certain conditions, as follows.  First, we apply the 
aspiration criterion only if the previous iteration of the local search did not produce a 
globally improving solution. Next, the move must meet two conditions: (1) the cost of the 
move must be less than that of the best move found so far during the current iteration; 
(2) a move meeting the first condition is permissible if the tabu tenure of the elements of 
the restricted move fall below a predefined aspiration threshold.  Since these conditions 
restrict the choices of the two initial nodes used to start the chain, they are tested in 
Step 1(a) of the ejection chain procedure in Figure 3.      
 
The number of non-improving iterations (or failures) since the last perturbation is kept 
by the NRF counter.  Both variants are restarted when an improving solution is not 
found within a predetermined number of iterations since the last perturbation was 
applied. The maximum restart failures threshold value MRF  is drawn from a range 
determined by the stopping criterion parameter.  At each restart, this value is redrawn 
to allow the search stagnation threshold to vary within a controlled range throughout 
the run of the algorithm.  For both EC2 and EC3, when the maximum restart failures 
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threshold is reached (NRF = MRF), the tabu parameters are reset to change the 
trajectory of the search.   
 
In EC2 the current working solution is replaced by the global best solution from the 
previous iterations of the search. EC3 restarts from a diversified version of the best 
solution.  In this variant, a diversification method is applied to a copy of the best 
permutation and the current working solution is replaced with this diversified 
permutation.  Figure 5 provides the pseudocode for the general multi-start algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4–Simple tabu tenure ejection chain algorithm: EC1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5–Multi-start ejection chain algorithm variants: EC2 and EC3 
 

Step 0. Initialization 
(a) Generate a starting solution S. 
(b) Let =*S S  be the current best solution. 
(c) Input parameters: maximum number of failures MF  and maximum levels L.  

Step 1. Perform tabu search 
(a) Call the ejection chain procedure with parameters S and L 
(b) Set = '.S S  
(c) If strictly improving:  

(c1)  Update the best solution with the new current solution, =* .S S   
(c2)  Set number of failures = 0.NF   

(d) Otherwise, set = +1.NF NF  
(e) If <NF MF  return to Step 1(a). Otherwise stop. 

Step 0. Initialization 
(a) Generate a starting solution S. 
(b) Let =*S S  be the current best solution. 
(c) Input parameters: maximum number of failures MF  and maximum levels L. 

Step 1. Perform tabu search 
(a) Call the ejection chain procedure with parameters S and L 
(b) Set = '.S S  
(c) If strictly improving:  

(c1) Update the best solution with the new current solution, =* .S S   
(c2) Set number of failures = 0.NF   
(c3) Disallow aspiration. 

(d) Otherwise: 
(d1) Increment number of failures = +1.NF NF  
(d2) Increment number of restart failures = +1.NRF NRF  
(d3) Allow aspiration. 
(d4) If >NRF MRF  (number restart failures > maximum restart failures)  

(d4.1) Update aspiration threshold.  
(d4.2) Remove tabu restrictions for all elements. 
(d4.3) Modify tabu tenure. 
(d4.4) Set = 0NRF  and modify MRF value. 
(d4.5) Set current solution = *.S S  
(d4.6) (If EC3) diversify (best solution)  .S   

(e) If <NF MF  return to Step 1(a). Otherwise stop. 
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The diversification procedure used in EC3 was suggested by Glover (1998) and its 
pseudocode is given in Figure 6.  This method creates a new solution from a seed 
solution (in this case the current global best permutation) by defining a step size and 
then reordering the permutation based upon this step size.  Starting from a step size of 
2, the step size is increased each time the algorithm is restarted, cycling back to the 
original step size if necessary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6–Diversification procedure 
 
 
To illustrate the method given in Figure 6, consider the following example permutation: 

ϕ = 3, 5, 8,1, 4, 6, 2, 7 .  
 
Choosing a step size of 2, the first iteration of the algorithm initializes the start variable 
to 2, which causes j to range from 2 to the number of elements in the permutation, in 
this example n = 8.  After the first iteration of the outer loop, the following partial 
permutation is obtained: 

π = 5,1, 6, 7, _, _, _, _ . 
 
The next pass through the outer loop then sets =1start  and the following complete 
permutation is obtained: 

π = 5,1, 6, 7, 3, 8, 4, 2 .  
 
In this manner, for each step size a different permutation is obtained. 

4. Computational Results 

All algorithms were tested on a standard set of QAP benchmark instances obtained from 
QAPLIB (Burkard et al., 1997).  All algorithms were written in the C programming 
language and run on a single Intel Itanium processor (1.3 GHz) on a SGI Altix running 
the Linux operating system. The parameters for each algorithm variant (EC1, EC2, and 
EC3) developed in this study are summarized in Table 1.  
 
 
 
 
 

Step 0. Initialization 
(a) Consider π  be a permutation associated with an input solution S 
(b) Consider a seed permutation ϕ  and set ϕ π= .  
(c) Set =1.k  
(d) Set =start step  and set = .j start  

Step 1. Generate diverse solution 
(a) Set π ϕ=( ) ( ).k j  
(b) Set = +1.k k  
(c) If <j n  set = +j j step  and go to Step 1(a).  
(d) If >1start  set = +1start start  and to Step 1(a). Otherwise stop. 
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Parameter 
 

 EC1 
 

EC2 
 

EC3 
Maximum Failures (MF)  
(Stopping Criterion SC1) 

 
5000n 

 
5000n 

 
5000n 

Time Limit 
(Stopping Criterion SC2) 

 1 hour (n ≤ 40) 
2 hours (n > 40) 

 1 hour (n ≤ 40) 
2 hours (n > 40) 

 1 hour (n ≤ 40) 
2 hours(n > 40) 

Allowable Failures (MRF)  
Lower Limit 
Upper Limit 

(Restart Criterion) 

 
n/a 
n/a 

 

 
5n 

500n 
 

 
5n 

500n 
 

Tabu Tenure  
Lower Limit (LT) 
Upper Limit (UT) 

 
3 (static) 
10 (static) 

  
n/10 (variable) 
3n/10 (variable) 

 
n/10 (variable) 
3n/10 (variable) 

Aspiration Threshold  n/a   (LT+UT)/2  (LT+UT)/2 
Restart Tabu Tenure 

Lower Limit (LT) 
Upper Limit (UT) 

 
n/a 
n/a 

 
n/10 

n 

 
n/10 

n 

Restart Solution 
 

n/a 
 

global best 
 diversified  

global best 
 

Table 1–TS Variant Parameter Settings 
 
We consider runs under two stopping conditions, denoted by SC1 and SC2.  SC1 
caused the algorithms to cease execution of the search after no improvement is found in 
5000n iterations (MF), where n is the number of facilities/locations, or the problem size. 
SC2 stipulates a time limit of 1 hour for instances of size n ≤ 40, and 2 hours for larger 
instances, after which the algorithm terminates execution. SC2 is the same stopping 
condition applied in Ahuja et al. (2007) and is used to allow for a direct comparison 
with the associated VLSN algorithms.         
 
Tables 2 and 3 present computational results for all variants of the algorithms under 
SC1 and SC2 stopping conditions, respectively. The parameters used in all algorithms 
for both Tables 2 and 3 are the same with the exception of the stopping condition.  All 
algorithms ran 10 times on each problem instance, each time starting from a randomly 
generated seed solution. The tabu tenure for EC1 was set to be an integer value 
randomly drawn from the range 3 to 10.  The tabu tenure for EC2 and EC3 is initialized 
with a value chosen from the range n/10 and 3n/10.  At each restart for EC2 and EC3, 
the tabu search parameters are adjusted.  The upper and lower limits, that are used to 
determine the tabu tenure for an element are redrawn and allowed to vary in the range 
n/10 to n.   Similarly, the maximum restart failures (MRF) parameter is reset every time 
a restart occurs for both the EC2 and EC3 variants.  At each restart MRF is chosen 
from the range 5n to 500n. As previously mentioned no aspiration criterion is used in 
EC1, while for EC2 and EC3 tabu active moves are subjected to two aspiration 
conditions. In our implementation, the required aspiration threshold is defined to be the 
average of the lower and upper limits of the current tabu tenure range. Also, as 
remarked EC2 and EC3 algorithms differ in the mechanism used to restart the search: 
EC2 restarting from the current global best solution, and EC3 restarting from a 
diversified version of the global best solution. 
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Table 2 and Table 3 follow the same format.  The first two columns provide the name of 
the test instance and the corresponding best known solution (BKS).  The next columns 
are organized in four groups associated with each variant of our ejection chain 
algorithm. The first two groups represent the simple tabu search algorithm restricted to 
first-level ejection chains to implement a 2-exchange neighborhood (2-exchange EC1), 
and its extension to n-level ejection chains implementing a variable depth k-exchange 
neighborhood (EC1). The next two groups correspond to the two multi-start tabu search 
variants using either the current global best solution (EC2) or a diversified version of it 
(EC3) as a perturbation scheme to restart the search.  For each algorithm we provide 
the average percent deviation (APD) to the BKS, the best percent deviation (BPD) for 
only the best solution obtained from the 10 runs, the average iteration the best solution 
was found (ABI), and either the average running time to completion (ATTC) in minutes 
using stopping criterion SC1 (Table 2) or the average running time to solution (ATTS) 
using stopping criterion SC2 (Table 3).  
 
Figure 7 graphically depicts the average solution quality of the three EC variants and 
the 2-exchange neighborhood from Table 2. Figure 8 shows a comparison of the average 
times to completion for all algorithms in Table 2 on each problem instance. 
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   2-Opt EC1  EC1  EC2  EC3 

Problem BKS  APD BPD ABI ATTC  APD BPD ABI ATTC  APD BPD ABI ATTC  APD BPD ABI ATTC 

Skorin-Kapov Instances 
sko42 
sko49 
sko56 
sko64 
sko72 
sko81 
sko90 

sko100a 
sko100b 
sko100c 
sko100d 
sko100e 
sko100f 

15812 
23386 
34458 
48498 
66256 
90998 
115534 
152002 
153890 
147862 
149576 
149150 
149036  

0.120 
0.199 
0.418 
0.644 
0.932 
0.901 
0.691 
0.736 
0.868 
1.108 
1.007 
1.178 
0.989 

0.000 
0.051 
0.012 
0.107 
0.211 
0.090 
0.230 
0.378 
0.659 
0.557 
0.389 
0.801 
0.769 

121327 
81096 
101949 
145538 
211365 
217687 
254279 
225563 
176445 
256918 
59199 
363182 
324463 

2.46 
4.51 
8.70 

19.66 
34.30 
58.79 
97.54 
146.47 
136.42 
152.55 
112.66 
174.00 
166.58  

0.028 
0.199 
0.527 
0.464 
0.691 
0.849 
0.881 
0.661 
0.803 
0.779 
0.862 
1.147 
0.979 

0.000 
0.000 
0.075 
0.000 
0.072 
0.259 
0.389 
0.404 
0.298 
0.170 
0.594 
0.615 
0.498 

141003 
56821 
69944 
86411 
224179 
76567 
104395 
182165 
338037 
176688 
106422 
188224 
76796 

4.78 
7.05 
12.78 
27.64 
54.37 
70.54 
117.12 
213.58 
262.14 
211.84 
189.76 
215.46 
180.70  

0.293 
0.235 
0.475 
0.243 
0.322 
0.336 
0.305 
0.314 
0.379 
0.731 
0.437 
0.522 
0.567 

0.000 
0.051 
0.012 
0.008 
0.060 
0.097 
0.000 
0.026 
0.127 
0.030 
0.070 
0.020 
0.169 

127261 
105762 
204842 
271342 
252483 
299275 
587829 
444283 
379273 
616575 
369067 
428918 
468075 

6.16 
11.00 
22.96 
50.46 
69.86 
121.94 
256.00 
334.82 
311.93 
396.26 
307.84 
329.18 
344.04  

0.061 
0.086 
0.259 
0.139 
0.340 
0.271 
0.272 
0.263 
0.226 
0.269 
0.316 
0.198 
0.395 

0.000 
0.051 
0.029 
0.000 
0.211 
0.044 
0.014 
0.133 
0.087 
0.107 
0.060 
0.020 
0.203 

181144 
164692 
144841 
330584 
310567 
378543 
443539 
451170 
378051 
470522 
667656 
583862 
412134 

7.15 
13.02 
19.97 
55.50 
76.20 
136.34 
219.75 
337.15 
311.29 
344.28 
414.04 
384.48 
323.81 

Average   0.753 0.327 195308 85.74  0.628 0.260 140589 120.60  0.397 0.052 350383 197.11  0.238 0.074 378254 203.31 

Symmetric Taillard Instances 
tai20a 
tai25a 
tai30a 
tai35a 
tai40a 
tai50a 
tai60a 
tai80a 
tai100a 

122455319 
344355646 
637117113 
283315445 
637250948 
458821517 
608215054 
818415043 

1185996137  

0.906 
1.523 
0.959 
1.123 
1.022 
1.090 
1.025 
0.804 
0.481 

0.000 
0.937 
0.398 
0.595 
0.439 
0.710 
0.775 
0.625 
0.348 

70967 
109665 
144811 
143038 
172807 
212317 
230485 
324638 
491175 

0.38 
0.23 
0.45 
1.08 
2.19 
6.67 

16.99 
64.78 
200.14  

0.718 
0.670 
0.645 
0.972 
0.825 
1.058 
1.017 
0.695 
0.563 

0.304 
0.000 
0.490 
0.698 
0.416 
0.721 
0.602 
0.453 
0.311 

60805 
63245 
127572 
98117 
202577 
198235 
157755 
311313 
304380 

0.31 
0.27 
1.29 
1.92 
4.50 
11.14 
23.78 
97.93 
252.10  

0.152 
0.294 
0.178 
0.302 
0.420 
0.732 
0.715 
0.644 
0.600 

0.000 
0.000 
0.000 
0.000 
0.305 
0.572 
0.499 
0.392 
0.272 

66085 
61480 
71869 
143831 
139842 
169572 
308515 
465271 
332753 

0.22 
0.71 
1.60 
3.29 
5.38 
13.81 
40.43 
142.07 
295.57  

0.199 
0.055 
0.137 
0.272 
0.387 
0.726 
0.861 
0.780 
0.654 

0.000 
0.000 
0.000 
0.000 
0.120 
0.564 
0.601 
0.581 
0.419 

50303 
76388 
61311 
151137 
183452 
189709 
134047 
211760 
321325 

0.20 
0.69 
1.29 
3.38 
6.10 

14.30 
28.60 
100.09 
291.44 

Average   0.993 0.536 211100 32.55  0.796 0.444 169333 43.69  0.449 0.227 195469 55.90  0.452 0.254 153270 49.56 

Overall   0.851 0.413 201796 63.98  0.729 0.335 152348 89.13  0.418 0.123 287009 139.34  0.326 0.147 286215 140.41 

 
Table 2–Computational results for Skorin-Kapov problems and symmetric Taillard problems using Stopping Criterion 1 
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Figure 7–Average Percent Deviation (APD) for Skorin-Kapov and  
symmetric Taillard Instances 

 
 

 
 

Figure 8–Average Time to Completion (ATTC) for Skorin-Kapov  
and symmetric Taillard instances 
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   2-Opt EC1  EC1  EC2  EC3 

Problem BKS  APD BPD ABI ATTS  APD BPD ABI ATTS  APD BPD ABI ATTS  APD BPD ABI ATTS 

Skorin-Kapov Instances 
sko42 
sko49 
sko56 
sko64 
sko72 
sko81 
sko90 

sko100a 
sko100b 
sko100c 
sko100d 
sko100e 
sko100f 

15812 
23386 
34458 
48498 
66256 
90998 

115534 
152002 
153890 
147862 
149576 
149150 
149036 

 

0.008 
0.053 
0.183 
0.475 
0.827 
0.855 
0.691 
0.739 
0.868 
1.122 
1.007 
1.191 
1.008 

0.000 
0.000 
0.000 
0.091 
0.211 
0.086 
0.230 
0.378 
0.659 
0.557 
0.389 
0.801 
0.782 

753938 
1888633 
1651179 
1106456 
473306 
473255 
254279 
144780 
176445 
167928 
59199 
202636 
237391 

6.61 
26.81 
37.48 
51.18 
30.55 
50.74 
40.27 
33.47 
40.82 
38.82 
13.68 
46.93 
52.01 

 0.000 
0.063 
0.324 
0.397 
0.705 
0.943 
0.785 
0.617 
0.521 
1.445 
1.019 
0.796 
1.063 

0.000 
0.000 
0.186 
0.000 
0.196 
0.481 
0.533 
0.163 
0.396 
0.889 
0.784 
0.413 
0.625 

103467 
615169 
1127980 
504155 
593491 
247691 
212166 
110996 
92304 
132206 
110292 
101984 
100648 

1.62 
15.08 
43.41 
38.14 
60.92 
41.69 
51.87 
39.94 
33.19 
42.48 
39.52 
36.66 
36.20 

 0.019 
0.107 
0.305 
0.139 
0.319 
0.364 
0.424 
0.424 
0.436 
0.963 
0.537 
0.692 
0.627 

0.000 
0.051 
0.012 
0.008 
0.060 
0.097 
0.029 
0.112 
0.149 
0.127 
0.119 
0.020 
0.279 

1183886 
857422 
771265 
469825 
316919 
327019 
272543 
208584 
238888 
182385 
202564 
216867 
187227 

27.50 
28.00 
38.07 
44.27 
39.52 
65.44 
77.96 
86.13 
98.71 
75.53 
83.66 
89.67 
77.53 

 0.000 
0.039 
0.027 
0.078 
0.250 
0.278 
0.473 
0.340 
0.408 
0.543 
0.517 
0.460 
0.542 

0.000 
0.000 
0.012 
0.000 
0.115 
0.114 
0.132 
0.197 
0.140 
0.172 
0.182 
0.020 
0.421 

984019 
15511213 
1176507 
642791 
635224 
340529 
202259 
171948 
129912 
188109 
200304 
214302 
203808 

21.43 
50.91 
58.02 
60.99 
79.22 
68.06 
57.84 
70.86 
53.54 
77.63 
88.14 
88.33 
84.19 

Average   0.694 0.322 583802 36.10  0.668 0.359 311734 36.98  0.412 0.082 418107 64.00  0.304 0.116 510840 66.09 

Symmetric Taillard Instances 
tai20a 
tai25a 
tai30a 
tai35a 
tai40a 
tai50a 
tai60a 
tai80a 

tai100a 

122455319 
344355646 
637117113 
283315445 
637250948 
458821517 
608215054 
818415043 

1185996137 

 

0.000 
0.102 
0.402 
0.479 
0.519 
0.802 
0.883 
0.745 
0.567 

0.000 
0.000 
0.016 
0.082 
0.074 
0.635 
0.769 
0.559 
0.354 

18885284 
24862224 
10567411 
4647443 
5101524 
2988029 
1596279 
535781 
292228 

7.52 
26.19 
22.58 
17.68 
31.42 
44.29 
54.50 
54.01 
67.46 

 0.000 
0.000 
0.161 
0.366 
0.550 
0.753 
0.791 
0.714 
0.558 

0.000 
0.000 
0.000 
0.067 
0.074 
0.534 
0.403 
0.532 
0.313 

5359412 
3924530 
6367375 
3902298 
2545141 
2209486 
800025 
417335 
160611 

5.80 
9.26 
27.75 
28.46 
28.88 
56.93 
45.52 
65.71 
57.79 

 0.000 
0.000 
0.000 
0.000 
0.274 
0.550 
0.629 
0.681 
0.714 

0.000 
0.000 
0.000 
0.000 
0.074 
0.352 
0.499 
0.554 
0.630 

410389 
265401 
520451 
507435 
1728563 
1045558 
685710 
421467 
180522 

0.89 
1.10 
3.62 
5.51 
27.76 
35.57 
49.25 
79.46 
74.65 

 0.000 
0.000 
0.000 
0.000 
0.219 
0.514 
0.657 
0.730 
0.729 

0.000 
0.000 
0.000 
0.000 
0.074 
0.364 
0.336 
0.486 
0.419 

260152 
132537 
293665 
915365 
1742277 
1041698 
685735 
345948 
131851 

0.56 
0.55 
2.04 
9.95 

28.01 
35.43 
49.24 
65.05 
54.36 

Average   0.500 0.277 7719578 36.18  0.433 0.214 2854024 36.23  0.316 0.234 640611 30.87  0.317 0.187 616581 27.24 

Overall   0.615 0.303 3502983 36.14  0.571 0.300 1351762 36.67  0.373 0.144 509131 50.45  0.309 0.145 554098 50.20 

 
Table 3–Computational results for Skorin-Kapov problems and symmetric Taillard problems using Stopping Criterion 2 
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Table 2 shows that the ejection chain neighborhood improved the average solution 
quality of all but 4 problems over the 2-exchange neighborhood embedded in the same 
heuristic.  The impact of the ejection chain neighborhood can be easily observed as EC1 
obtained better average results than the 2-exchange EC1 algorithm on 19 of the 22 test 
problems and tied on 1.  The 2-exchange EC1 and EC1 are identical algorithms except 
for the neighborhood utilized.  In the 2-exchange EC1 algorithm, the maximum length 
of the chain was limited to 2 nodes, which simulates a 2-exchange neighborhood.  The 
best overall solution was found by EC1 for 12 out of the 22 problems, with the 2-
exchange version obtaining the best overall solution for 9 out of 22, with a tie for one 
problem where both variants found the BKS. 
 
In Table 3 the results were similar.  EC1 using the ejection chain neighborhood 
obtained better average results on 13 of the 22 problem instances and tied on 1.  The 
performance was degraded a small amount due to the time limit imposed.  It should be 
noted that the 2-exchange neighborhood algorithm is able to perform around twice as 
many iterations in the same amount of time as the ejection chain neighborhood.  While 
the ejection chain neighborhood is quick compared to a full k-opt exploration, it is still 
slower than a swap neighborhood.  This leads to an interesting observation.  In Table 3, 
where the runtime of the algorithm was restricted, the ejection chain neighborhood still 
outperformed the 2-exchange neighborhood in terms of solution quality.  On 8 of the 14 
test instances where the ejection chain neighborhood tied or bested the 2-exchange 
neighborhood in Table 3, the average time to the best solution (ATTS) for EC1 was 
actually less than the 2-exchange neighborhood EC1.  This indicates that the ejection 
chain neighborhood is able to quickly find high quality solutions.  This is reinforced by 
the results in Table 2, which shows that allowed to iterate with stagnation as the 
stopping condition, EC1 using the ejection chain neighborhood performs even better 
against the 2-exchange neighborhood EC1.  These results are obtained in most cases 
without doubling the computational time of the 2-exchange neighborhood EC1. 
 
In Table 2, as well as in Table 3, the EC3 multi-start variant produced the best overall 
results of all approaches, obtaining the best average solution quality for 16 out of 22 
problems in Table 2.  In Table 3, EC3 obtained the best average solution quality for 14 
out of 22 problems.  However, EC2 and EC3 tied on 4 of the 22 problems, so the results 
indicate that EC3 does as well as or better than all other variants under SC2 on 18 of 
the 22 problems.  EC2 had 4 of the best average percent deviations in Table 2 (3 out of 
22 in Table 3).  EC1 and the 2-exchange EC1 provided one best average percent 
deviation each in Table 2.  In Table 3, the 2-exchange EC1 obtained the best average 
percent deviation to one problem.  The EC2 variant, which replaced the current working 
solution with the global best solution rather than a diversified solution, was clearly 
outperformed by the EC3 variant.  This suggests that the use of strategic diversification 
is highly beneficial and agrees with previous findings where metaheuristics applied to 
the QAP that employ some type of diversity have provided good results (Misevicius 
2003, 2005; Drezner, 2003). 
 
EC2 shows a slight edge over EC3 in obtaining the best overall solution.  EC2 produced 
the best overall solutions (BPD) for 8 of 22 problems in Table 2 (7 out of 22 in Table 3) 
while EC3 produced 5 of the best overall solutions in Table 2 (3 out of 22 in Table 3).  
EC1 produced 1 best overall solution in both Tables.  In Table 3, 2-exchange 
neighborhood EC1 produced 1 best overall solution.  On the other 8 instances in Table 
2 (10 in Table 3) at least 2 of the variants tied.  
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4.1 Comparisons with very-large scale neighborhood algorithms 
 

The VLSN algorithms introduced by Ahuja et al. (2007) employ a type of variable depth 
k-opt neighborhood and are therefore appropriate for comparison with our EC 
algorithms.  The purpose of this comparison is to investigate the relative performance of 
the ejection chain algorithms in the current study and other large neighborhood 
algorithms.  In order to clarify the analysis, it is convenient to discuss the fundamentals 
of VLSN algorithms and contrast them to the EC algorithms. 
 
A full path enumeration search requires that every k-exchange be explored and can be 
prohibitively expensive even for relatively small values of k.  This expense has severely 
limited attempts to use neighborhoods for the QAP more complex than the swap 
neighborhood (which results in k = 2). The VLSN algorithms and the ejection chain 
algorithms contribute alternative approaches for exploring larger neighborhoods.   
The VLSN algorithms of Ahuja et al. (2007) introduce an improvement graph for the 
QAP together with several variants of a search algorithm utilizing a large neighborhood.  
The concept of an improvement graph was first introduced by Thompson and Orlin 
(1989) for partitioning problems.  For the QAP, it is used to store partial costs for k-
exchanges on a permutation.  The initial cost of constructing the improvement graph is 

3( )nO ; however, once created for a permutation it can be updated in 2( )knO  time.  The 
improvement graph does not contain the full cost of the k-exchange, rather a good 
approximation.  It is especially useful in a path enumeration scheme as it allows for 
relatively quick evaluation of a large number of neighbors on a single permutation with 
the construction of only one improvement graph.  If a new permutation is introduced, 
the improvement graph must be reconstructed.   
 
The ejection chain method, in contrast, exploits a selective subset of neighbors, which 
provides a quick investigation of a promising extended neighborhood rather than 
examining all exchanges at a given depth. This reduces the number of calculations 
necessary, thus speeding the neighborhood search process without the necessity of 
maintaining a cost matrix.  As in the VLSN method a k-level ejection chain does not 
necessarily produce the overall best k-exchange move, rather a potentially good move. 
Ejection chain strategies are particularly amenable to being exploited within an 
adaptive memory TS framework, where other operators may also be applied to the 
permutation.  
 
The VLSN search algorithms in Ahuja et al. (2007) explore iteratively larger 
neighborhoods up to a defined k beginning from a randomly drawn permutation.  
Specifically, the VLSN algorithms explore all exchanges at depth 2, then all (or a pruned 
subset) exchanges at depth 3, followed lastly by the 4-exchanges (in implementation, 
the algorithms are limited to a depth of 4).  In contrast, the ejection chain method 
discovers the best exchange at depth 2, and then iteratively extends that 2-exchange up 
to a depth of n.  The method keeps track of the level k* of the chain where the best trial 
solution was found and then applies the associated k-exchange move to the 
permutation and the process is repeated.  An iteration of the VLSN algorithms ends 
when the search on the current permutation is exhausted (a new best solution is found 
or no better solution is found after exploring all allowed k-exchanges). Then a new 
random permutation is drawn, a new improvement graph is constructed and the 
process is repeated.  When comparing the two methods, the VLSN algorithms more 
nearly resemble a breadth-first search and the EC algorithms more nearly resemble a 
depth-first search, though each affords the strategic benefit of avoiding the complexity 
of such classical searches while nevertheless uncovering high quality solutions. Future 
research that combines the two approaches would be of interest. 
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The difference between the VLSN algorithms concerns how many k-exchanges are 
examined at a given depth.  The authors propose four VLSN variants.  The first is a full 
path enumeration where all paths of a given depth are examined.  As previously 
mentioned this process is very costly and was ruled out by the authors as a viable 
algorithm.  The other three variants employed “path pruning” techniques to reduce the 
number of paths examined at each depth.  The second proposed variant, keeps only 
paths with a negative cost at each depth.  The authors state that this variant was 
outperformed in testing by the other variants, so computational results for this variant 
were not provided.  In both VLSN variants, for which results are presented, a different 
path pruning technique is employed to reduce the number of paths examined at each 
depth.  We will refer to these two variants as VLSN1 and VLSN2.  In VLSN1, the best 
α 2n  paths with the lowest cost at one level are carried forward to the next level to build 
larger exchanges.  In implementation, α  is set to 1 and the maximum path length is set 
to 4.  By contrast, VLSN2 excludes all paths except for the best path for each node.  In 
other words, only the initial path from each node that has the lowest cost is allowed to 
proceed to the next depth.  VLSN2 also first performed a descent to a local optimum at 
depth 2 before beginning path enumeration. 
 
Table 4 provides comparisons between the two VLSN algorithms (VLSN1 and VLSN2) 
and the EC algorithms (EC1, EC2, and EC3) developed for this study using the same 
stopping criterion (SC2).  The results for SC1 are also provided for some supplemental 
observations.  In addition, we provide in Figure 9 a pairwise comparison of the 
algorithms in terms of the number of best solutions produced over all problems. The 
VLSN algorithms were run using SC2 on a Pentium IV, 2.4 GHz processor and were also 
written in the C programming language.  SPEC (2000) shows that the processor used in 
the VLSN study is equivalent to (just slightly better than) the processor used in the 
current study (Intel Itanium, 1.3 GHz).  Therefore, the comparisons are as valid as 
possible without having algorithms written by the same programmer and run on the 
same machine. 
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   Stopping Criterion 1 (SC1)  Stopping Criterion 2 (SC2) 
   EC1  EC2  EC3  

2-Opt 
EC1 

2-Opt 
VLSN 

 
EC1 

 
EC2 EC3 VLSN1 VLSN2 

Problem BKS  APD  APD  APD  APD APD  APD  APD APD APD APD
sko42 
sko49 
sko56 
sko64 
sko72 
sko81 
sko90 

sko100a 
sko100b 
sko100c 
sko100d 
sko100e 
sko100f 

15812 
23386 
34458 
48498 
66256 
90998 

115534 
152002 
153890 
147862 
149576 
149150 
149036 

 

0.028 
0.199 
0.527 
0.464 
0.691 
0.849 
0.881 
0.661 
0.803 
0.779 
0.862 
1.147 
0.979  

0.293 
0.235 
0.475 
0.243 
0.322 
0.336 
0.305 
0.314 
0.379 
0.731 
0.437 
0.522 
0.567  

0.061 
0.086 
0.259 
0.139 
0.340 
0.271 
0.272 
0.263 
0.226 
0.269 
0.316 
0.198 
0.395  

0.008 
0.053 
0.183 
0.475 
0.827 
0.855 
0.691 
0.739 
0.868 
1.122 
1.007 
1.191 
1.008 

0.000
0.188 
0.348 
0.334 
0.426 
0.433 
0.573 
0.524 
0.502 
0.498 
0.580 
0.654 
0.621 

 0.000
0.063 
0.324 
0.397 
0.705 
0.943 
0.785 
0.617 
0.521 
1.445 
1.019 
0.796 
1.063 

 0.019 
0.107 
0.305 
0.139 
0.319 
0.364 
0.424 
0.424 
0.436 
0.963 
0.537 
0.692 
0.627 

0.000
0.039 
0.027 
0.078 
0.250 
0.278 
0.473 
0.340 
0.408 
0.543 
0.517 
0.460 
0.542 

0.000
0.103 
0.116 
0.177 
0.260 
0.308 
0.407 
0.289 
0.395 
0.331 
0.439 
0.257 
0.326 

0.000
0.214 
0.226 
0.433 
0.465 
0.516 
0.457 
0.462 
0.550 
0.594 
0.619 
0.654 
0.652 

Average   0.628  0.397  0.238  0.694  0.437  0.668  0.412  0.304  0.262  0.449 
tai20a 
tai25a 
tai30a 
tai35a 
tai40a 
tai50a 
tai60a 
tai80a 

tai100a 

122455319 
344355646 
637117113 
283315445 
637250948 
458821517 
608215054 
818415043 

1185996137 

 

0.718 
0.670 
0.645 
0.972 
0.825 
1.058 
1.017 
0.695 
0.563  

0.152 
0.294 
0.178 
0.302 
0.420 
0.732 
0.715 
0.644 
0.600  

0.199 
0.055 
0.137 
0.272 
0.387 
0.726 
0.861 
0.780 
0.654  

0.000
0.102 
0.402 
0.479 
0.519 
0.802 
0.883 
0.745 
0.567 

0.000
0.000 
0.016 
0.384 
1.160 
1.813 
2.016 
2.166 
2.266 

 0.000
0.000 
0.161 
0.366 
0.550 
0.753 
0.791 
0.714 
0.558 

0.000
0.000 
0.000 
0.000 
0.274 
0.550 
0.629 
0.681 
0.714 

0.000
0.000 
0.000 
0.000 
0.219 
0.514 
0.657 
0.730 
0.729 

0.000
0.000 
0.000 
0.000 
0.687 
1.151 
1.400 
1.459 
1.569 

0.000
0.000 
0.177 
0.384 
1.099 
1.665 
1.746 
1.957 
1.900 

Average   0.796  0.449  0.452  0.500  1.091  0.433  0.316  0.317  0.696  0.992 
Overall   0.729  0.418  0.326  0.615  0.705  0.571  0.373  0.309  0.440  0.671 

Stopping criteria 1: no improving move found in 5000*n iterations; Stopping Criterion 2: 1 hour for ≤ 40,n  2 hours for > 40n  
 

Table 4–EC comparisons with VLSN 
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Figure 9–Number of instances one algorithm is better than another 
(algorithm X, algorithm Y):number of ties 

 
As previously discussed, the EC1 algorithms contained very limited adaptive memory 
guidance in the form of a simple tabu list with small tabu tenures.  A 2-exchange 
version of EC1 is provided to examine the impact of the ejection chain neighborhood.  
However, since the VLSN study also provided a 2-exchange algorithm, we can compare 
the impact of the minimal short-term memory guidance in the EC1 variant.  Comparing 
the 2-exchange versions of VLSN and EC1, the VLSN algorithm performs better on the 
sko* instances while EC1 is better on the tai* instances. Overall, there is no significant 
difference in the performance of the two 2-exchange algorithms, which demonstrates 
that the tabu list in the EC1 version had little positive impact other than to prevent 
cycling.   
 
Another interesting observation can be made examining the 2-exchange algorithms.  
The 2-exchange EC1 algorithm did especially poorly on the sko* instances, losing on 11 
of the 13 instances.  This could indicate that the restrictiveness of the tabu list was 
especially detrimental for this set of instances.  Indeed, experimental analysis 
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conducted during the tuning of the algorithm parameters showed better results (on 
average) when smaller tabu tenures are used for the sko* instances. However, those 
parameters were not so suitable for tai* instances and we restricted our method to use 
the same parameter values for all instances. In contrast, the 2-exchange VLSN revealed 
significant difficulty on the larger tai* instances ≥( 40),n  exceeding the best known 
solutions value by more than 2%. In fact, the difference in the characteristics of the 
problem instances becomes especially apparent in the larger neighborhoods.  This is 
also seen to be true when examining the difference between the variable-depth versions 
of VLSN and the EC algorithms.   
 
VLSN1 performs very well on the sko* instances. It performs better than EC1 and EC2 
on all but one or two instances and completely dominates VLSN2 on the sko* test set.  
In general the VLSN algorithms tend to perform better on the sko* instances; however 
even in that set both EC2 and EC3 perform better than VLSN2. Only EC3 is competitive 
with VLSN1, obtaining better solutions on 5 of the 13 sko* instances and tying on 1.  
VLSN1 obtains the best quality solutions on the biggest 7 sko* instances under SC2.   
 
VLSN1 introduces diversity into the search by carrying forth the best 2n  paths 
regardless of their cost benefit.  EC3 brings diversity into the search by introducing 
variability in tabu tenure ranges and allowing for multi-starts.  This indicates that the 
interplay between intensification and diversification of the search may be especially 
important for this set of instances.  On one hand, restricting the local search may 
prevent the methods from reaching good local optimal solutions that are relatively close 
in the solution space, but not necessarily within the neighborhood space of the current 
2-exchange neighborhood. On the other hand, some appropriate level of diversification 
should be maintained in order for the method to explore other regions of the solution 
space.  
 
The positive results of VLSN1 for the sko* set seem to indicate that for these instances a 
strategy that simultaneously explores intensification and diversification may be more 
appropriate than strategies that alternate between the two search strategies. This 
speculation is also supported by experiments on landscape analysis for the QAP under 
a 2-exchange neighborhood (e.g. Merz and Freisleben, 2000; Stützle, 2006).  These 
studies show that sko* instances have a smooth landscape with a significantly high 
correlation between neighboring solutions. However, local optima distributions show 
that good solutions are spread out across the solution space. Hence, the challenge in 
these instances is not so much in escaping from local optimality but rather in 
determining the regions where the best local optima actually exist. Since local optima in 
these landscapes share some degree of similarity it is unlikely that good local optima 
exist in the vicinity of a relatively poor local optimum. Although this may establish a 
sufficient condition for an algorithm to engage in a stronger diversification search, a 
region of high-quality solutions is not necessarily close to a best local optimum. In any 
case, the best local optima are likely to be encountered in regions of relatively high-
quality solutions, thus suggesting a somewhat extensive exploration of the search 
around these potentially good regions.   We conjecture that the relative advantage of 
VLSN1 on these sko* instances stem from its breath-first type of local search strategy. 
In a depth-first search strategy as in our EC algorithms these issues are addressed by 
giving the algorithm sufficient flexibility to explore multiple search paths from local 
regions, thus suggesting the advisability of a small tabu tenure as considered in our 
EC1, perhaps just large enough to prevent cycling. In this algorithm intensification is 
promoted by using small tabu tenure ranges and diversification is achieved by the long 
search paths generated by the ejection chain neighborhood. The interplay between 
intensification and diversification is obtained by the variable depth moves selected by 
the ejection chain algorithm. Short moves keep the search in the vicinity of the current 
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region while long moves induce the search to explore other regions. A more aggressive 
interaction between intensification and diversification results from coupling the 
inherent depth-first search of the EC neighborhood with the desirable breath-first 
component emphasized in VLSN. This is accomplished in EC2 and EC3 algorithms by 
combining larger tabu tenures with an aspiration criterion, and in addition allowing for 
multi-starts. On one hand, large tabu tenures implement stronger diversification. On 
the other hand, the aspiration prevents the algorithm from overlooking best solutions 
while keeping the balance between intensification and diversification. 
 
The symmetric tai* instances appear to behave differently.  Both EC2 and EC3 beat or 
tie both VLSN algorithms on all 9 problems.  EC1 outperforms VLSN1 on 5 of the 9 
instances, ties on 2, and outperforms or ties VLSN2 on all 9 instances.  For this set of 
instances, the interplay between intensification and diversification does not prove to be 
as influential.  This may be justified by the fact that tai* instances have a highly rugged 
fitness landscape structure with far more local optima than sko* instances. Although in 
both sko* and tai* test sets local optimal distributions show good solutions spread out 
all over the solution space, the (almost) nonexistent correlation between neighboring 
solutions in tai* instances makes them more difficult than sko* instances when local 
searches are limited to 2-exchange neighborhoods.  Since local optima in the tai* 
instances are typically very deep and share no similarities, extending the depth in k-
exchange neighborhoods (to high values of k) may be more beneficial than limiting it (to 
small values of k) in order to make it possible to explore each level (k) of the 
neighborhood more extensively. We conjecture that this is what gives the edge to the EC 
algorithms over their VLSN counterpart on the tai* instances. In fact, the best overall 
solutions for the larger symmetric tai* instances are split between the EC algorithms.  
This trend was exhibited in computational tests where parameter settings or adaptive 
memory guidance could be modified to improve results on one test set to the detriment 
of the other.  With the simple adaptive memory guidance employed in this study, the 
parameter settings used were found to provide the best compromise in solution quality 
between the two test sets.  Future work could include using more sophisticated 
adaptive memory techniques to overcome this characteristic. 
 
The results presented in Tables 2, 3, and 4 demonstrate the impact of the ejection chain 
neighborhood structure.  The significance of the larger embedded neighborhoods is 
demonstrated by the improvement of the results obtained by EC1 over the same 
algorithm limited to a 2-exchange neighborhood.  EC1 implemented a very simple local 
search with short tabu tenure and no restriction on depths (levels) explored.  In an 
overall analysis, the EC algorithms are very competitive with the VLSN algorithms.  EC1 
performs better than VLSN2 in terms of both solution quality and number of best 
solutions, but it is not as good as VLSN1. EC2 provides better average solution quality 
than VLSN1, though VLSN1 manages to find a greater number of best solutions. EC2 
and EC1 provide better results on 6 of the 22 instances where VLSN1 provides better 
results on 12 of the 22 instances against EC2 and 13 of the 22 instances against EC1, 
tying on the others. EC3 provides better results on 10 of the 22 instances against 
VLSN1.  EC3 and VLSN1 tie on 5 instances and VLSN1 provides better results on 7 
instances.   
    
VLSN2 does not perform as well as the EC algorithms and is not competitive with 
VLSN1.  Comparing VLSN2 to the EC algorithms, the worst EC variant (EC1) obtains 
better results to 10 out of 22 instances.  The two algorithms tie on 3 instances and 
VLSN2 wins on 9.  EC2 obtains better quality results than VLSN2 on 16 of the 22 
instances and ties on 2.  VLSN2 obtains the best result on the remaining 4 instances 
against EC2.  EC3 wins on 18 of the 22 problem instances, they tie on 3, and VLSN2 
obtains the best result on one instance.  
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In summary, no algorithm dominates all the others on all problem instances, and EC 
and VLSN seem to be more effective on different test sets. However, EC3 is the overall 
winner in terms of average solution quality and number of best solutions. These results 
suggest there may be significant value in combining the EC and VLSN strategies, and 
that additional adaptive memory guidance can be useful for further improving the EC 
approaches.  
 
The results for the EC algorithms using SC1 are also shown in Table 4.  This provides 
the opportunity to view the difference in solution quality between stopping conditions in 
the EC algorithm, disclosing that with longer runtimes significant improvement in 
solution quality can be obtained.  
 
 
 
4.2 Extended computational analysis 
 
We now extend our analysis to include comparisons with traditional Iterative Local 
Search (ILS) and Ant Colony Optimization (ACO) algorithms, which have some 
similarities to our multi-start TS algorithms. Comparisons to several of the best of the 
more complex metaheuristic algorithms are also given.  Tables 5 and 6 provide results 
for the following additional algorithms from the literature: 
 
• Robust Tabu Search – RTS (Taillard, 1991) 
• Four Iterated Local Search Variants – ILS1, ILS2, ILS3, ILS4 (Stützle, 2006)  
• Three Ant Colony Optimization Variants – ACO1, ACO2, ACO3 (Stützle and Dorigo 

1999) 
• A Genetic Algorithm Hybrid with a modified RTS (GA/MRT) (Drezner 2008) 
• An Ant Colony Optimization/Genetic Algorithm/Local Search Hybrid – ACO/GA/LS 

Tseng, and S. Liang (2003)  
• Three Tabu Search variants –ETS1, ETS2, and ETS3 (Misevicius, 2005) 
• Two Population Based ILS Algorithms – ILS5 and ILS6 (Stützle, 2006) 
• An Improved Population Based ILS Algorithm – I-ILS6 (Stützle, 2006) 
 
These algorithms were all run on different platforms utilizing different stopping 
conditions.  Therefore, time comparisons cannot be provided.  The best ejection chain 
algorithm (EC3) and the best VLSN algorithm (VLSN1) are also shown in the tables both 
using stopping criterion SC2 for consistency. 
 
Table 5 provides a comparison of the three EC algorithms developed for this study with 
the results obtained for the classical robust tabu search (RTS) algorithm (Taillard, 
1991), four variants of the iterative local search (ILS) algorithm (Stützle, 2006), and  
three variants an ant colony optimization (ACO) algorithm (Stützle and Dorigo, 1999). 
These algorithms are most comparable to EC3 and VLSN2 in terms of structure and the 
heuristic guidance employed.  Not all algorithms provide solutions for all test instances, 
so comparisons are only shown for the overlapping instances. Dash symbols indicate 
that results were not provided for that instance by the corresponding algorithm. The 
average solution quality over all the instances tested by the corresponding algorithm is 
provided at the bottom of each test set. Similar averages over all problems tested are 
provided at the bottom of the table.   
 
Although limited to short-term memory components of tabu search and 2-exchange 
neighborhoods, RTS has long been one of the most successful tabu search algorithms 
for the QAP.  Perhaps, due to its excellent tradeoff between algorithmic simplicity and 
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solution quality, RTS is often used in a large variety of more complex algorithms such 
as those discussed later.  
 
All ILS variants use 2-opt local search and perturb the solution using random pairwise 
exchanges. To determine a solution from which to restart the search, several options 
were considered. In the traditional ILS variant (ILS1), the best solution, which may or 
may not be the working solution obtained by the current run of the local search, is 
perturbed and then a local search is applied. In the second version (ILS2), a random 
restart is employed which straightforwardly replaces the working solution with a 
random permutation. The third variant (ILS3) always perturbs the working solution 
obtained from the local search. The fourth variant (ILS4) allows worse solutions based 
upon a probability, that are then perturbed and the local search restarted. Several 
population-based variants of ILS (ILS5, ILS6, I-ILS6) are also proposed. These 
algorithms maintain a population of solutions and use ILS to operate on the population. 
The third variant, I-ILS6, uses an improved local search from all the previous ILS 
algorithms discussed. 
 
ACO uses probabilistic perturbations that build solutions by choosing an assignment 
influenced by the search history (pheromone trail). A local search is then applied to the 
constructed solution.  The first variant (ACO1) modifies the construction phase to use 
the pheromone trail to modify the current solution rather than construct a new one. 
The other two variants use a typical ACO construction phase but ACO2 applies a 2-opt 
local search and ACO3 uses RTS as its local search. The type of memory used in these 
ACO algorithms is obviously more complicated than that used by the previous 
algorithms, including RTS.   
 
As we can see in Table 5, EC3 is very competitive with RTS. Both algorithms use simple 
short-term memory based on tabu tenure restrictions and two levels of aspiration. RTS 
beats EC3 in all sko* instances and ties in the only solution where both algorithms 
manage to find the best known solution. The reverse situation occurs for the tai* 
instances where EC3 ties RTS on the three instances where RTS finds the best known 
solution and completely dominates RTS on the remaining instances, yet finding one 
more best known solution. The fact that VLSN1 is not as good as RTS on either of the 
test sets reinforces the idea that the depth of the neighborhood is particularly relevant. 
When comparing EC3 to the ILS and ACO algorithms in Table 5, EC3 appears very 
competitive on the sko* instances and completely dominates all four ILS variants and 
the three ACO variants on the tai* instances. These results strongly uphold our 
conjecture on the potential advantage of the ejection chain neighborhood over the 2-
exchange neighborhood for the tai* instances. For algorithms using the same 
neighborhood structure, the starting solution seems to have an effect on the quality of 
the solutions produced. The best ILS variant (ILS2) using random restart is superior to 
the other three variants that always perturb some solution previously found during the 
search. Since a small perturbation is always applied to the local optimum found in an 
iteration of the ILS algorithm is seems quite natural that a stronger diversification may 
be needed at a restart. This requirement does not seem so relevant when larger 
neighborhoods are used. For example, ILS1 and EC3 both restart the search by 
perturbing the current best solution; however, EC3 significantly outperforms ILS1 on all 
instances of both test sets.  Also, both EC3 and VLSN1 outperform ILS2 on average over 
all problems tested.  
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   EC3  VLSN1  RTS  ILS1 ILS2  ILS3  ILS4 ACO1 ACO2 ACO3 

Problem BKS  APD  APD  APD  APD APD  APD  APD APD APD APD 
sko42 
sko49 
sko56 
sko64 
sko72 
sko81 
sko90 

sko100a 
sko100b 
sko100c 
sko100d 
sko100e 
sko100f 

15812 
23386 
34458 
48498 
66256 
90998 

115534 
152002 
153890 
147862 
149576 
149150 
149036 

 

0.000 
0.039 
0.027 
0.078 
0.250 
0.278 
0.473 
0.340 
0.408 
0.543 
0.517 
0.460 
0.542  

0.000 
0.103 
0.116 
0.177 
0.260 
0.308 
0.407 
0.289 
0.395 
0.331 
0.439 
0.257 
0.326  

0.000 
0.038 
0.010 
0.005 
0.043 
0.051 
0.062 
0.089 
0.056 
0.031 
0.055 
0.041 
0.066  

0.269 
0.226 
0.418 
0.413 
0.383 
0.586 
0.576 
0.358 

- 
- 
- 
- 
- 

 0.010 
0.133 
0.087 
0.068 
0.134 
0.101 
0.131 
0.115 

- 
- 
- 
- 
- 

 0.010 
0.133 
0.087 
0.068 
0.134 
0.100 
0.187 
0.161 

- 
- 
- 
- 
- 

 0.161 
0.139 
0.153 
0.202 
0.294 
0.194 
0.322 
0.257 

- 
- 
- 
- 
- 

0.076 
0.141 
0.101 
0.129 
0.277 
0.144 
0.231 

- 
- 
- 
- 
- 
- 

0.015 
0.067 
0.068 
0.042 
0.109 
0.071 
0.192 

- 
- 
- 
- 
- 
- 

0.104 
0.150 
0.118 
0.171 
0.243 
0.223 
0.288 

- 
- 
- 
- 
- 
- 

Average   0.304  0.262  0.042  0.404  0.097  0.110  0.215  0.157  0.081  0.185 
EC3   0.304  0.304  0.304  0.186  0.186  0.186  0.186  0.164  0.164  0.164 

VLSN1   0.262  0.262  0.262  0.208  0.208  0.208  0.208  0.196  0.196  0.196 
tai20a 
tai25a 
tai30a 
tai35a 
tai40a 
tai50a 
tai60a 
tai80a 

tai100a 

122455319 
344355646 
637117113 
283315445 
637250948 
458821517 
608215054 
818415043 

1185996137 

 

0.000 
0.000 
0.000 
0.000 
0.219 
0.514 
0.657 
0.730 
0.729  

0.000 
0.000 
0.000 
0.000 
0.687 
1.151 
1.400 
1.459 
1.569  

0.000 
0.000 
0.000 
0.112 
0.462 
0.882 
0.974 
1.065 
1.071  

0.723 
1.181 
1.304 
1.731 
2.036 
2.127 
2.200 
1.775 

- 

0.503 
0.876 
0.808 
1.110 
1.319 
1.496 
1.498 
1.198 

- 

 0.542 
0.896 
0.989 
1.113 
1.490 
1.491 
1.692 
1.200 

- 

0.467 
0.823 
1.141 
1.371 
1.491 
1.968 
2.081 
1.576 

- 

0.675 
1.189 
1.311 
1.762 
1.989 
2.800 
3.070 
2.689 

- 

0.191 
0.488 
0.359 
0.773 
0.933 
1.236 
1.372 
1.134 

- 

0.428 
1.751 
1.286 
1.586 
1.131 
1.900 
2.484 
2.103 

- 
Average   0.317  0.696  0.507  1.635  1.101  1.177  1.365  1.936  0.811  1.584 

EC3   0.317  0.317  0.317  0.265  0.265  0.265  0.265  0.265  0.265  0.265 
VLSN1   0.696  0.696  0.696  0.587  0.587  0.587  0.587  0.587  0.587  0.587 
Overall   0.309  0.440  0.232  1.019  0.599  0.643  0.790  1.106  0.470  0.931 

EC3   0.309  0.309  0.309  0.225  0.225  0.225  0.225  0.218  0.218  0.218 
VLSN1   0.440  0.440  0.440  0.397  0.397  0.397  0.397  0.405  0.405  0.405 

 
Table 5–Comparisons with multi-start algorithms 
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Table 6 presents results for some of the best performing tabu search algorithms from 
the literature as well as the best performing hybrid genetic algorithms and population-
based iterative local search algorithms.  This set of algorithms, including the ETS 
implementations, ACO/GA/LS, the population-based ILS algorithms, and GA/MRT, are 
some of the more sophisticated and complex heuristics for the QAP.  Table 6 uses the 
same format as Table 5. The ETS algorithms obtain some of the best results for the 
symmetric tai* instances and the hybrid GAs due to Drezner obtain some of the best 
results for the sko* instances.  Population-based ILS and ACO/GA/LS hybrid 
algorithms perform very well on sko* instances competing closely with several GA and 
TS hybrid algorithms from the literature, but not as well as GA/MRT. Also, they are not 
as competitive on the tai* instances. The information in Table 6 is only intended to 
provide a cursory overview of the solution quality of the extended neighborhood 
algorithms in contrast to some of the best performing algorithms from the literature.   
 
ETS1, ETS2, and ETS3 are all modified RTS algorithms embedded in multi-start tabu 
search approaches using a variety of diversification operators. These tabu search 
algorithms modify Taillard’s RTS by removing the aspiration criteria, decreasing the 
tabu tenure, and simplifying the tabu conditions.  Several diversifying perturbation 
schemes were incorporated into these algorithms, including a random pairwise 
exchange procedure, a shift procedure, a dichotomic mutation (exchanging halves of the 
permutation) and a neighbor exchange mutation (exchanging two adjacent 
assignments). The variants test various combinations of these operators. The algorithms 
differ by the type and combinations of the perturbation operators applied during the 
search. The layering in these TSs are more complicated than those in the current study, 
as often several levels of restarting occur with multiple diversification operators. The 
ETS algorithms are currently the best performing algorithms for the symmetric tai* 
instances but report no results for the sko* instances.  EC3, even though much 
simpler, approximates quite well the solution quality achieved by the ETS algorithms.  
 
The genetic algorithms due to Drezner are the most successful algorithms for the sko* 
test instances. Drezner has presented a series of hybrid GAs for the QAP.  The 
algorithms differ by the improvement operator used to hybridize the GA.  Drezner (2002) 
presents three hybrid GAs, the first uses only a strict decent operator to improve the 
solutions created by the GA.  In the second hybrid GA, the strict decent operator is 
replaced with a simple tabu search.  In the third hybrid GA, the incorporation of a new 
tabu search algorithm, concentric tabu search (Drezner, 2002), proved very successful 
on the sko* problems.  Concentric tabu search was improved in a subsequent study 
(Drezner, 2003), to allow more moves than the original version and again embedded it 
within a GA.  
 
Concentric tabu search shares some commonalities with the path-relinking concept.  In 
concentric tabu search, series of swap moves are iteratively applied to a permutation 
until the distance of the working solution is maximally different from the original 
solution (or an improved solution is found).  In a sense, the “center” solution is serving 
as both the solution initiating the search (the initiating solution in path-relinking 
terminology) and the solution being modified.  The “path” the solutions are following is 
guided by the requirement that the solution be different from the original solution.  A 
move can contribute a point (or two) to the distance (difference) score if the exchange 
moves at least one (or two) facilities to locations they did not previously occupy. Since in 
concentric tabu search, the reference set is open to all neighboring solutions that 
increase the difference from the “center” solution rather than restricted to a pre-selected 
subset of reference (or guiding) solutions, a larger number of intermediate solutions are 
available than in traditional path-relinking.   
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The algorithm works by examining all swaps on the “center” solution thereby obtaining 
all permutations that are 2 elements different than the “center” solution.  A pruning 
technique, like those applied in VLSN, is used to reduce the number of permutations of 
distance 2 that are carried forward.  The pruning technique keeps a defined number K 
of the best permutations of distance 2.  Swap moves are then performed again on the K 
solutions retained.  Performing a swap on the permutations of distance 2 may result in 
a permutation with distance 3 or distance 4.  As new solutions are created, a defined 
number of the best solutions at a given distance are kept in lists.  Once the search of all 
permutations at a given distance is completed, the next distance is explored, and so on.  
The algorithm continues this process until either a new best solution is found which 
restarts the process, or the maximum distance from the original “center” solution is 
reached.  All moves made in this algorithm are swaps and the cost calculations 
described in Taillard (1991) and Burkard and Rendl (1984) are therefore used.  This 
approach is novel for a QAP tabu search in that the moves made are guided by the 
distance from the original permutation. 
 
While the concentric tabu search has proven to be a successful addition to a hybridized 
GA, for the solution of the sko* test instances, Drezner (2008) provided even better 
solutions to this test set using a very slightly modified RTS (MRT) incorporated into a 
GA (GA/MRT).  The only change made to the RTS in GA/MRT is to increase the tabu 
tenure range. The QAP appears to be very sensitive to the parameters and adaptive 
memory guidance utilized both in the algorithms developed in the current study and 
those from the literature.  Since GA/MRT provides the best results of the series, the 
earlier Drezner hybrid GAs are not included in the tables below.  GA/MRT provides 
superior results to all other algorithms on the sko* instances.  Results are not provided 
for the hybrid GAs on the tai* instances. 
 
When comparing the large neighborhood algorithms to the population-based ILS and 
ACO/GA/LS hybrids, we can see that these algorithms perform better than EC3 and 
VLSN1 on the sko* test set, but they all lose against EC3 on the tai* instances. EC3 
outperforms ACO/GS/LS on all 9 tai* instances. EC3 also outperforms ILS5 and ILS6 
in all 9 tai* instances and wins on all but the 2 largest instances against I-ILS6.  VLSN1 
wins against ILS5 and ILS6 on the tai* instances, but it is not competitive with 
ACO/GS/LS or I-ILS6. 
 
These results suggest promise for the exploration of extended neighborhoods. 
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   EC3  VLSN1  ETS1  ETS2 ETS3 ILS5  ILS6 I-ILS6 ACO/GA/LS GA/MRT 

Problem BKS  APD  APD  APD  APD APD APD  APD APD APD APD
sko42 
sko49 
sko56 
sko64 
sko72 
sko81 
sko90 

sko100a 
sko100b 
sko100c 
sko100d 
sko100e 
sko100f 

15812 
23386 
34458 
48498 
66256 
90998 

115534 
152002 
153890 
147862 
149576 
149150 
149036 

 

0.000 
0.039 
0.027 
0.078 
0.250 
0.278 
0.473 
0.340 
0.408 
0.543 
0.517 
0.460 
0.542  

0.000 
0.103 
0.116 
0.177 
0.260 
0.308 
0.407 
0.289 
0.395 
0.331 
0.439 
0.257 
0.326  

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
-  

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 - 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.022 
0.090 
0.102 
0.079 
0.139 
0.100 
0.262 
0.191 

- 
- 
- 
- 
- 

 0.000 
0.068 
0.071 
0.057 
0.085 
0.082 
0.128 
0.109 

- 
- 
- 
- 
- 

0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.007 
0.006 
0.012 
0.007 
0.002 
0.021 
0.037 

0.000 
0.060 
0.010 
0.000 
0.020 
0.030 
0.040 
0.020 
0.010 
0.000 
0.030 
0.000 
0.030 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 

Average   0.304  0.262        0.123  0.075  0.007  0.019  0.000 
EC3   0.304  0.304        0.186  0.186  0.304  0.304  0.304 

VLSN1   0.262  0.262        0.208  0.208  0.262  0.262  0.262 
tai20a 
tai25a 
tai30a 
tai35a 
tai40a 
tai50a 
tai60a 
tai80a 

tai100a 

122455319 
344355646 
637117113 
283315445 
637250948 
458821517 
608215054 
818415043 

1185996137 

 

0.000 
0.000 
0.000 
0.000 
0.219 
0.514 
0.657 
0.730 
0.729  

0.000 
0.000 
0.000 
0.000 
0.687 
1.151 
1.400 
1.459 
1.569  

0.000 
0.037 
0.003 
0.000 
0.167 
0.322 
0.570 
0.321 
0.367  

0.000 
0.000 
0.041 
0.000 
0.130 
0.354 
0.603 
0.390 
0.371 

0.000 
0.015 
0.000 
0.000 
0.173 
0.388 
0.677 
0.405 
0.441 

0.500 
0.869 
0.707 
1.010 
1.305 
1.574 
1.622 
1.219 

- 

 0.344 
0.656 
0.668 
0.901 
1.082 
1.211 
1.349 
1.029 

- 

- 
0.000 
0.000 
0.000 
0.280 
0.610 
0.820 
0.620 
0.690

0.110 
0.290 
0.340 
0.490 
0.590 
0.850 
0.030 
0.860 
0.800

-
- 
- 
- 
- 
- 
- 
- 
- 

Average   0.317  0.696  0.199  0.210  0.233  1.101  0.905  0.378  0.484   
EC3   0.317  0.317  0.317  0.317  0.317  0.265  0.265  0.356  0.317   

VLSN1   0.696  0.696  0.696  0.696  0.696  0.587  0.587  0.783  0.696   
Overall   0.309  0.440        0.612  0.490  0.148  0.210   

EC3   0.309  0.309        0.225  0.225  0.324  0.309   
VLSN1   0.440  0.440        0.397  0.397  0.461  0.440   

 
Table 6–Comparisons with advanced metaheuristic algorithms 
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5. Conclusions 

This study examined the use of ejection chains for the QAP.  The results indicate the 
use of these embedded neighborhood structures result in higher solution quality than 
obtained by using the traditional 2-exchange neighborhood.  We also demonstrate the 
power of coupling this neighborhood definition with more sophisticated adaptive 
memory guidance. Our resulting ejection chain approaches are shown to be competitive 
with recently proposed path enumeration techniques embodied in very large search 
neighborhood (VLSN) methods. 
 
Future studies could examine integrating the ejection chain algorithms with the VLSN 
methods and with higher level adaptive memory techniques such as path relinking.  
Our computational testing showed the parameters chosen for the tabu search 
framework and the multi-start variants produced the best results from the several 
combinations examined, but more thorough analysis of these parameters could also 
provide better quality results, particularly by means of dynamic parameter 
manipulation.  The addition of the diversification method in the EC3 algorithm 
disclosed the importance of strategic diversification to find enhanced solutions, and we 
anticipate that additional attention to diversification strategies may also yield gains for 
future algorithms.   
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